gamma production in p Ne-20 and p N interactions at 300-GeV

Yuldashev, B.S. ; Aliev, Sh.M. ; Alimov, M.A. ; et al.
Phys.Rev.D 43 (1991) 2803-2814, 1991.
Inspire Record 299846 DOI 10.17182/hepdata.22850

Data on the multiplicity and inclusive spectra of γ produced in inelastic pNe20 and pN interactions at 300 GeV are presented. The γ multiplicity for pNe20 interactions is 11.43±0.23, and the ratio of 〈nγ〉 for pNe20 and pN interactions is 1.48±0.05. From an analysis of the effective-mass distributions, 〈nπ0〉=4.91±0.52 and 〈nη0〉=1.47±0.33. In fact, η0 production is much higher in pNe20 interactions [R(η0π0)=0.66±0.12 for np≥21] than in pN interactions [R(η0π0)=0.06±0.04]. No η′(958) signal is seen. Strong correlations between 〈nγ〉 and np, the number of secondary protons, are observed, primarily from the central and target fragmentation regions. Inclusive y* and p⊥ spectra are analyzed and evidence for low-energy cascading and rescattering of fast particles in the projectile fragmentation region is discussed. The data are compared to the predictions of the additive quark model, the Lund model, and the dual parton model.

9 data tables

No description provided.

GAMMA-MULTIPLICITY FOR (PROTON-NUCLEON)-INTERACTION WAS OBTAINED AT AVERAGING OVER (PP) AND (PN) EVENTS, AND THEN WAS USED IN THE PRESENTED RATIO.

No description provided.

More…

Multiplicity of Secondary Particles in Inelastic Proton - Neon Interactions at 300-{GeV}/$c$

Azimov, S.A. ; Inogamov, Sh.V. ; Kosonovsky, E.A. ; et al.
Phys.Rev.D 23 (1981) 2512, 1981.
Inspire Record 10318 DOI 10.17182/hepdata.17871

The data on the total inelastic and partial cross sections in pNe interactions at 300 GeV are presented. It is found that the total cross section, σin(pNe)=356±13 mb, and multiplicity distributions of the number of negative and relativistic charged particles are in good agreement with predictions of a multiple-scattering model based on Glauber's approach. The multiplicity of negative particles obeys the Koba-Nielsen-Olesen (KNO) scaling, but it is observed that the KNO function depends on the atomic mass number of the target. From an analysis of the average multiplicities of secondary particles, it is shown that approximately 10 percent of the fast (p≳1.2 GeV) positive secondaries are protons, which are derived from the nucleons in the neon nucleus.

13 data tables

No description provided.

No description provided.

No description provided.

More…