Cosmic ray hadron flux at sea level up to 15-TeV

Mielke, H.H. ; Foeller, M. ; Engler, J. ; et al.
J.Phys.G 20 (1994) 637-649, 1994.
Inspire Record 383116 DOI 10.17182/hepdata.38560

Using a prototype of a large hadron calorimeter, vertical cosmic ray hadrons were recorded and the all-hadron flux was measured in the range from 5 GeV to 10 TeV. Hadron reconstruction and identification are described. We observe a vertical flux of dI/dEh=(1.59+or-0.24)*10-5(Eh/100 GeV)-2.72+or-0.10 (m2 s sr GeV)-1. The flux compares well with values obtained in other experiments. Total inelastic cross sections for protons scattered by nuclei in air are deduced from the unaccompanied hadron flux and compared with the values reported by other authors.

1 data table

PROTON AIR CROSS SECTION.


Inelastic cross-section for p-air collisions from air shower experiment and total cross-section for p p collisions at SSC energy

Honda, M. ; Nagano, M. ; Tonwar, S. ; et al.
Phys.Rev.Lett. 70 (1993) 525-528, 1993.
Inspire Record 342678 DOI 10.17182/hepdata.19743

Based on an analysis of the extensive air shower data accumulated over the last ten years at Akeno Cosmic Ray Observatory, the value of the proton-air nuclei inelastic cross section (σinp−air) has been determined assuming the validity of quasi-Feynman scaling of particle production in the fragmentation region. The energy dependence of σinp−air can be represented as 290(E/1 TeV)0.052 mb in the energy interval 1016.2–1017.6 eV, where E is the incident proton energy. The total p-p cross section (σtotp−p), derived using the nuclear distribution function obtained from the shell model, increases with energy as 38.5+1.37 ln2(√s /10 GeV) mb.

2 data tables

No description provided.

Best fit to data gives SIG(PP) = 38.5 + 1.37*LN(SQRT(S)/10 GeV)**2.