Measurement of particle production in proton induced reactions at 14.6-GeV/c

The E-802 collaboration Abbott, T. ; Akiba, Y. ; Beavis, D. ; et al.
Phys.Rev.D 45 (1992) 3906-3920, 1992.
Inspire Record 323473 DOI 10.17182/hepdata.3830

Particle production in proton-induced reactions at 14.6 GeV/c on Be, Al, Cu, and Au targets has been systematically studied using the E-802 spectrometer at the BNL-Alternating Gradient Synchrotron. Particles are measured in the angular range from 5° to 58° and identified up to momenta of 5, 3.5, and 8 GeV/c for pions, kaons, and protons, respectively. Mechanisms for particle production are discussed in comparison with heavy-ion-induced reactions at the same incident energy per nucleon.

105 data tables

No description provided.

No description provided.

No description provided.

More…

Production of hadrons with large transverse momentum at 200, 300, and 400 GeV

The E100 collaboration Cronin, J.W. ; Frisch, Henry J. ; Shochet, M.J. ; et al.
Phys.Rev.D 11 (1975) 3105-3123, 1975.
Inspire Record 1327 DOI 10.17182/hepdata.24884

We have measured, as a function of transverse momentum (p⊥), the invariant cross section Edσd3p for the production of π±, K±, p, p¯, d, and d¯ in proton collisions with a tungsten (W) target at incident proton energies of 200, 300, and 400 GeV. The measurements were made in the region of 90° in the c.m. system of the incident proton and a single nucleon at rest. Measurements were also made with 300-GeV protons incident on Be, Ti, and W targets of equal interaction length. These p-nucleus measurements, which show a strong dependence on atomic number at high p⊥, were used to extract effective proton-nucleon cross sections by extrapolation to atomic number unity. At large values of the scaling variable x⊥=2p⊥s, where s is the square of the c.m. energy, the pion data are found to be well represented by the expression (s)−ne−ax⊥, with n=11.0±0.4 and a=36.0±0.4. x⊥<0.35, where similar measurements have been made at the CERN ISR, our data are in good agreement with the ISR data.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Comparison of p + A and Si + Au collisions at 14.6-GeV/c

The E802 collaboration Abbott, T. ; Akiba, Y. ; Beavis, D. ; et al.
Phys.Rev.Lett. 66 (1991) 1567-1570, 1991.
Inspire Record 331219 DOI 10.17182/hepdata.19913

The production of π±,K±,p has been measured in p+Be and p+Au collisions for comparison with central Si+Au collisions. The inverse slope parameters T0 obtained by an exponential fit to the invariant cross sections in transverse mass are found to be, T0p,K+,ππ∼140–160 MeV in p+A collisions, whereas in central Si+Au collisions, T0p,K+∼200–220 MeV >T0ππ∼140–160 MeV at midrapidity. The π± and K+ distributions are shifted backwards in p+Au compared with p+Be. A gradual increase of (dn/dy)K+ per projectile nucleon is observed from p+Be to p+Au to central Si+Au collisions, while pions show no significant increase.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Production of pi+-, K+-, p, and anti-p in relativistic Au + Pt, Si + Pt, and p + Pt collisions

The E886 collaboration Diebold, G.E. ; Bassalleck, B. ; Burger, T. ; et al.
Phys.Rev.C 48 (1993) 2984-2994, 1993.
Inspire Record 364483 DOI 10.17182/hepdata.26015

During the recent commissioning of Au beams at the Brookhaven Alternating Gradient Synchrotron facility, experiment 886 measured production cross sections for π±, K±, p, and p¯ in minimum bias Au+Pt collisions at 11.5A GeV/c. Invariant differential cross sections, Ed3σ/dp3, were measured at several rigidities (p/Z≤1.8 GeV/c) using a 5.7° (fixed-angle) focusing spectrometer. For comparison, particle production was measured in minimum bias Si+Pt collisions at 14.6A GeV/c using the same apparatus and in p+Pt collisions at 12.9 GeV/c using a similar spectrometer at KEK. When normalized to projectile mass, Aproj, the measured π± and K± cross sections are nearly equal for the p+Pt and Si+Pt reactions. In contrast to this behavior, the π− cross section measured in Au+Pt shows a significant excess beyond Aproj scaling of the p+Pt measurement. This enhancement suggests collective phenomena contribute significantly to π− production in the larger Au+Pt colliding system. For the Au+Pt reaction, the π+ and K+ yields also exceed Aproj scaling of p+Pt collisions. However, little significance can be attributed to these excesses due to larger experimental uncertainties for the positive rigidity Au beam measurements. For antiprotons, the Si+Pt and Au+Pt cross sections fall well below Aproj scaling of the p+Pt yields indicating a substantial fraction of the nuclear projectile is ineffective for p¯ production. Comparing with p+Pt multiplicities, the Si+Pt and Au+Pt antiproton yields agree with that expected solely from ‘‘first’’ nucleon-nucleon collisions (i.e., collisions between previously unstruck nucleons). In light of expected p¯ annihilation in the colliding system, such projectile independence is unexpected without additional (projectile dependent) sources of p¯ production. In this case, the data indicate an approximate balance exists between absorption and additional sources of antiprotons. This balance is remarkable given the wide range of projectile mass spanned by these measurements.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Pion Production by Protons on a Thin Beryllium Target at 6.4, 12.3, and 17.5 GeV/c Incident Proton Momenta

The E910 collaboration Chemakin, I. ; Cianciolo, V. ; Cole, B.A. ; et al.
Phys.Rev.C 77 (2008) 015209, 2008.
Inspire Record 755923 DOI 10.17182/hepdata.51393

An analysis of inclusive pion production in proton-beryllium collisions at 6.4, 12.3, and 17.5 GeV/c proton beam momentum has been performed. The data were taken by Experiment 910 at the Alternating Gradient Synchrotron at the Brookhaven National Laboratory. The differential $\pi^+$ and $\pi^-$ production cross sections ($d^2\sigma/dpd\Omega$) are measured up to 400 mRad in $\theta_{\pi}$ and up to 6 GeV/c in $p_{\pi}$. The measured cross section is fit with a Sanford-Wang parameterization.

16 data tables

Pion production cross section for 6.4 GeV incident protons.

Pion production cross section for 6.4 GeV incident protons.

Pion production cross section for 6.4 GeV incident protons.

More…

Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

The HARP collaboration Catanesi, M.G. ; Edgecock, R. ; Ellis, Malcolm ; et al.
Eur.Phys.J.C 53 (2008) 177-204, 2008.
Inspire Record 761546 DOI 10.17182/hepdata.51401

A measurement of the double-differential $\pi^{\pm}$ production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum $100 \MeVc \leq p &lt; 800 \MeVc$ and angle $0.35 \rad \le \theta &lt;2.15 \rad$ is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc).

54 data tables

Double-differential cross section for PI+ production from C in the LAB system for PI+ polar angle from 0.35 to 0.55 radians.

Double-differential cross section for PI+ production from C in the LAB system for PI+ polar angle from 0.55 to 0.75 radians.

Double-differential cross section for PI+ production from C in the LAB system for PI+ polar angle from 0.75 to 0.95 radians.

More…

Large-angle production of charged pions by 3 GeV/c - 12.9 GeV/c protons on beryllium, aluminium and lead targets

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Eur.Phys.J.C 54 (2008) 37-60, 2008.
Inspire Record 761543 DOI 10.17182/hepdata.51357

Measurements of the double-differential $\pi^{\pm}$ production cross-section in the range of momentum $100 \MeVc \leq p &lt; 800 \MeVc$ and angle $0.35 \rad \leq \theta &lt; 2.15 \rad$ in proton--beryllium, proton--aluminium and proton--lead collisions are presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12.9 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections at six incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc, 8.9 \GeVc (Be only), 12 \GeVc and 12.9 \GeVc (Al only)) and compared to previously available data.

54 data tables

Double-differential cross section for PI+ production from BE in the LAB system for PI+ polar angle from 0.35 to 0.55 radians.

Double-differential cross section for PI+ production from BE in the LAB system for PI+ polar angle from 0.55 to 0.75 radians.

Double-differential cross section for PI+ production from BE in the LAB system for PI+ polar angle from 0.75 to 0.95 radians.

More…

Measurement of the production of charged pions by protons on a tantalum target

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Eur.Phys.J.C 51 (2007) 787-824, 2007.
Inspire Record 752890 DOI 10.17182/hepdata.51527

A measurement of the double-differential cross-section for the production of charged pions in proton--tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment ($100 \MeVc \le p &lt; 800 \MeVc$ and $0.35 \rad \le \theta &lt;2.15 \rad$) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections ${{\mathrm{d}^2 \sigma}} / {{\mathrm{d}p\mathrm{d}\theta}}$ at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the pion yields within the acceptance of typical neutrino factory designs are shown as a function of beam momentum. The measurement of these yields within a single experiment eliminates most systematic errors in the comparison between rates at different beam momenta and between positive and negative pion production.

18 data tables

Double-differential cross section for PI+ production in the LAB system for PI+ polar angle from 0.35 to 0.55 radians.

Double-differential cross section for PI+ production in the LAB system for PI+ polar angle from 0.55 to 0.75 radians.

Double-differential cross section for PI+ production in the LAB system for PI+ polar angle from 0.75 to 0.95 radians.

More…

Measurement of the production cross-sections of $\pi^\pm$ in p-C and $\pi^\pm$-C interactions at 12 GeV/c

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Astropart.Phys. 29 (2008) 257-281, 2008.
Inspire Record 778842 DOI 10.17182/hepdata.50415

The results of the measurements of the double-differential production cross-sections of pions in p-C and $\pi^\pm$-C interactions using the forward spectrometer of the HARP experiment are presented. The incident particles are 12 GeV/c protons and charged pions directed onto a carbon target with a thickness of 5% of a nuclear interaction length. For p-C interactions the analysis is performed using 100035 reconstructed secondary tracks, while the corresponding numbers of tracks for $\pi^-$-C and $\pi^+$-C analyses are 106534 and 10122 respectively. Cross-section results are presented in the kinematic range 0.5 GeV/c $\leq p_{\pi} &lt;$ 8 GeV/c and 30 mrad $\leq \theta_{\pi} &lt;$ 240 mrad in the laboratory frame. The measured cross-sections have a direct impact on the precise calculation of atmospheric neutrino fluxes and on the improved reliability of extensive air shower simulations by reducing the uncertainties of hadronic interaction models in the low energy range.

19 data tables

Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 30 to 60 mrad.

Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 60 to 90 mrad.

Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 90 to 120 mrad.

More…

Forward pi+/- production in p-O2 and p-N2 interactions at 12 GeV/c

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Astropart.Phys. 30 (2008) 124-132, 2008.
Inspire Record 790079 DOI 10.17182/hepdata.50531

Measurements of double-differential charged pion production cross-sections in interactions of 12 GeV/c protons on O_2 and N_2 thin targets are presented in the kinematic range 0.5 GeV/c &lt; p_{\pi} &lt; 8 GeV/c and 50 mrad &lt; \theta_{\pi} &lt; 250 mrad (in the laboratory frame) and are compared with p--C results. For p--N_2 (p--O_2) interactions the analysis is performed using 38576 (7522) reconstructed secondary pions. The analysis uses the beam instrumentation and the forward spectrometer of the HARP experiment at CERN PS. The measured cross-sections have a direct impact on the precise calculation of atmospheric neutrino fluxes and on the improved reliability of extensive air shower simulations by reducing the uncertainties of hadronic interaction models in the low energy range. In particular, the present results allow the common hypothesis that p--C data can be used to predict the p--N_2 and p--O_2 pion production cross-sections to be tested.

12 data tables

Double differential cross section for pion production in P-N2 interactions for the pion scattered polar angle range 50 to 100 mrad.

Double differential cross section for pion production in P-N2 interactions for the pion scattered polar angle range 100 to 150 mrad.

Double differential cross section for pion production in P-N2 interactions for the pion scattered polar angle range 150 to 200 mrad.

More…