Inclusive-photon production and its dependence on photon isolation in $pp$ collisions at $\sqrt s=13$ TeV using 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 086, 2023.
Inspire Record 2628741 DOI 10.17182/hepdata.134100

Measurements of differential cross sections are presented for inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb$^{-1}$ of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region.

48 data tables

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<0.8$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.8<|\eta^{\gamma}|<1.37$ and photon isolation cone radius $R=0.4$.

More…

Measurement of the cross section for inclusive isolated-photon production in $pp$ collisions at $\sqrt s=13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 770 (2017) 473-493, 2017.
Inspire Record 1510441 DOI 10.17182/hepdata.79798

Inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV is studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2 fb$^{-1}$. The cross section is measured as a function of the photon transverse energy above 125 GeV in different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data.

8 data tables

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<1.37$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $1.56<|\eta^{\gamma}|<1.81$.

More…

Comparison of the Z/gamma*+jets to gamma+jets cross sections in pp collisions at sqrt(s)= 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 10 (2015) 128, 2015.
Inspire Record 1372730 DOI 10.17182/hepdata.72989

A comparison of the differential cross sections for the processes Z/gamma* + jets and photon (gamma) + jets is presented. The measurements are based on data collected with the CMS detector at sqrt(s) = 8 TeV corresponding to an integrated luminosity of 19.7 inverse femtobarns. The differential cross sections and their ratios are presented as functions of pt. The measurements are also shown as functions of the jet multiplicity. Differential cross sections are obtained as functions of the ratio of the Z/gamma* pt to the sum of all jet transverse momenta and of the ratio of the Z/gamma* pt to the leading jet transverse momentum. The data are corrected for detector effects and are compared to simulations based on several QCD calculations.

14 data tables

The Z boson differential transverse momentum cross-section in an inclusive $Z/\gamma^{*}+\mathrm{jets}$, $N_{\mathrm{jets}} \geq1$ selection.

The $\gamma$ differential transverse momentum cross-section in an inclusive $\gamma+\mathrm{jets}$, $N_{\mathrm{jets}} \geq1$ selection for central rapidities $\vert y_{\gamma} \vert > 1.4$.

The Z boson differential transverse momentum cross-section in an inclusive $Z/\gamma^{*}+\mathrm{jets}$, $N_{\mathrm{jets}} \geq2$ selection.

More…

Measurement of the inclusive isolated prompt photon cross section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector using 4.6 fb-1

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 89 (2014) 052004, 2014.
Inspire Record 1263495 DOI 10.17182/hepdata.66783

A measurement of the cross section for the production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The results are based on an integrated luminosity of 4.6 fb-1 collected with the ATLAS detector at the LHC. The cross section is measured as a function of photon pseudorapidity and transverse energy in the kinematic range between 100 GeV and 1000 GeV and in the regions of pseudorapidity less than 1.37 and between 1.52 and 2.37. The results are compared to leading-order parton-shower Monte Carlo models and next-to-leading-order perturbative QCD calculations. Next-to-leading-order perturbative QCD calculations agree well with the measured cross sections as a function of transverse energy and pseudorapidity.

3 data tables

Measured inclusive prompt photon production cross section in the pseudorapidity range |eta^gamma| < 1.37 as a function of E_T^gamma with statistical and systematic uncertainties.

Measured inclusive prompt photon production cross section in the pseudorapidity range |eta^gamma| 1.52-2.37 as a function of E_T^gamma with statistical and systematic uncertainties.

Measured inclusive prompt photon production cross section in the ET_gamma region > 100 GeV as a function of |eta(gamma)| with statistical and systematic uncertainties.


Measurement of the cross section for prompt isolated diphoton production using the full CDF Run II data sample

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 110 (2013) 101801, 2013.
Inspire Record 1207879 DOI 10.17182/hepdata.66020

This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy of 1.96 TeV using data corresponding to 9.5/fb integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured differential cross section is compared to three calculations derived from the theory of strong interactions. These include a prediction based on a leading order matrix element calculation merged with parton shower, a next-to-leading order, and a next-to-next-to-leading order calculation. The first and last calculations reproduce most aspects of the data, thus showing the importance of higher-order contributions for understanding the theory of strong interaction and improving measurements of the Higgs boson and searches for new phenomena in diphoton final states.

23 data tables

The measured differential cross sections for $M_{\gamma\gamma}$ , together with the predictions from the Sherpa and NNLO Monte Carlos.

The measured differential cross sections for $M_{\gamma\gamma}$ when $P_T > M_{\gamma\gamma}$ , together with the predictions from the Sherpa and NNLO Monte Carlos.

The measured differential cross sections for $M_{\gamma\gamma}$ when $P_T < M_{\gamma\gamma}$ , together with the predictions from the Sherpa and NNLO Monte Carlos.

More…

Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 706 (2011) 150-167, 2011.
Inspire Record 921594 DOI 10.17182/hepdata.57899

A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.

4 data tables

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range < 0.6.

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 0.6 TO 1.37.

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 1.52 TO 1.81.

More…

Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 710 (2012) 256-277, 2012.
Inspire Record 1084729 DOI 10.17182/hepdata.58979

Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.

6 data tables

Isolated photon spectra for PB PB collisions in 3 centrality ranges.

Isolated photon spectra for PB PB collisions in the full centrality range.

Isolated photon spectra for P P collisions.

More…

Measurement of the Differential Cross Section for Isolated Prompt Photon Production in pp Collisions at 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 84 (2011) 052011, 2011.
Inspire Record 922830 DOI 10.17182/hepdata.58958

A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range |eta|<2.5 and the transverse energy range 25 < ET < 400 GeV, corresponding to the kinematic region 0.007 < xT < 0.114. Photon candidates are identified with two complementary methods, one based on photon conversions in the silicon tracker and the other on isolated energy deposits in the electromagnetic calorimeter. The measured cross section is presented as a function of ET in four pseudorapidity regions. The next-to-leading-order perturbative QCD calculations are consistent with the measured cross section.

2 data tables

The measured prompt photon production spectra in the two |eta| regions, 0.0-0.9 and 0.9-1.44.

The measured prompt photon production spectra in the two |eta| regions, 1.57-2.1 and 2.1-2.5.


Measurement of the Isolated Prompt Photon Production Cross Section in pp Collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 106 (2011) 082001, 2011.
Inspire Record 879403 DOI 10.17182/hepdata.63810

The differential cross section for the inclusive production of isolated prompt photons has been measured as a function of the photon transverse energy E_T-gamma in pp collisions at sqrt(s)=7 TeV using data recorded by the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.9 inverse picobarns. Photons are required to have a pseudorapidity |eta_gamma|<1.45 and E_T-gamma > 21 GeV, covering the kinematic region 0.006 < x_T < 0.086. The measured cross section is found to be in agreement with next-to-leading-order perturbative QCD calculations.

1 data table

Measured isolated prompt photon differential cross section.


A New determination of alpha(s) using direct photon production cross-sections in p p and anti-p p collisions at S**(1/2) = 24.3-GeV

The UA6 collaboration Werlen, M. ; Ballocchi, G. ; Breedon, R.E. ; et al.
Phys.Lett.B 452 (1999) 201-206, 1999.
Inspire Record 496157 DOI 10.17182/hepdata.34551

Direct photon production cross sections obtained in high statistics p ̄ p and pp collisions at s =24.3 GeV at the CERN SPS are used in a next-to-leading order QCD analysis. From the cross section difference σ( p ̄ p → γX)−σ(pp → γX) and quark distributions measured in deep inelastic scattering, a determination of the strong coupling constant, α s , is performed via a measurement of Λ (4) MS . This measurement yields a value Λ (4) MS = 210±22 ( stat. )±44 ( syst. ) +105 −36 ( theo. ) MeV. The corresponding value of α s expressed at M 2 Z is α s (M 2 Z )=0.1112 ±0.0016 ( stat. ) ±0.0033 ( syst. ) +0.0077 −0.0034 ( theo. ) .

1 data table

Value of LAMBDA(MSBAR) and ALPHAS at MZ**2 deduced from the difference in the pbar and p direct photon cross sections. The second systematic error is due to the uncertainties in the theory.