Search for the $Z\gamma$ decay mode of new high-mass resonances in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 848 (2024) 138394, 2024.
Inspire Record 2695554 DOI 10.17182/hepdata.141854

This letter presents a search for narrow, high-mass resonances in the $Z\gamma$ final state with the $Z$ boson decaying into a pair of electrons or muons. The $\sqrt{s}=13$ TeV $pp$ collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb$^{-1}$. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into $Z\gamma$. For spin-0 resonances produced via gluon-gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon-gluon fusion (or quark-antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV.

6 data tables

The main sources of systematic uncertainty for the $X\to Z \gamma$ search. The gluon-gluon fusion spin-0 signal samples produced at $m_{X} = [220-3400]$ GeV are used to evaluate the systematic uncertainty. The ranges for the uncertainties span the variations among different categories and different $m_{X}$ resonance masses. The uncertainty due to the spurious signal uncertainty is reported as the absolute number of events. In the table, "ID" for photon and electrons refers to identification efficiency uncertainties, "ISO" refers to isolation efficiency uncertainties, "TRIG" refers to trigger efficiency uncertainties, "RECO" refers to muon reconstruction efficiency uncertainty and "TTVA" refers to muon track-to-vertex-association efficiency uncertainty.

The observed (expected) upper limits of $\sigma(pp\to X)\cdot\mathcal{B}(X\to Z\gamma)$ for spin-0 and spin-2 heavy resonances at 95\% CL. $m_{X}$ varies from 220 GeV to 3400~\GeV.

Impacts of grouped dominant systematic uncertainties. The impact corresponds to the relative variation of the asymptotic expected upper limit of $\sigma(pp \rightarrow X) \times BR(X \rightarrow Z\gamma)$ from $m_{X}=220$ GeV to $m_{X}=3.4$ TeV when re-evaluating the quantity by fixing the corresponding nuisance parameters to the best-fit values, while keeping others free to float. The impact of total systematic uncertainties are performed in the last row.

More…

First measurement of the absorption of $^{3}\overline{\rm He}$ nuclei in matter and impact on their propagation in the galaxy

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Nature Phys. 19 (2023) 61-71, 2023.
Inspire Record 2026264 DOI 10.17182/hepdata.133480

In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of $^{3}\overline{\rm He}$ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as input to calculations of the transparency of our Galaxy to the propagation of $^{3}\overline{\rm He}$ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing $^{3}\overline{\rm He}$ momentum from 25% to 90% for cosmic-ray sources. The results indicate that $^{3}\overline{\rm He}$ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.

21 data tables

Raw primary antihelium3-to-helium3 ratio as a function of the momentum p_primary.

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with default sigma_inel(3Hebar).

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with sigma_inel(3Hebar)x0.5.

More…

Strong constraints on jet quenching in centrality-dependent $p$+Pb collisions at 5.02 TeV from ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.Lett. 131 (2023) 072301, 2023.
Inspire Record 2090791 DOI 10.17182/hepdata.130943

Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including $pp$ and $p$+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb$^{-1}$ of $p$+Pb and 3.6 pb$^{-1}$ of $pp$ collisions at 5.02 TeV. The yields of charged hadrons with $p_\mathrm{T}^\mathrm{ch} >0.5$ GeV near and opposite in azimuth to jets with $p_\mathrm{T}^\mathrm{jet} > 30$ or $60$ GeV, and the ratios of these yields between $p$+Pb and $pp$ collisions, $I_{p\mathrm{Pb}}$, are reported. The collision centrality of $p$+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The $I_{p\mathrm{Pb}}$ values are consistent with unity within a few percent for hadrons with $p_\mathrm{T}^\mathrm{ch} >4$ GeV at all centralities. These data provide new, strong constraints which preclude almost any parton energy loss in central $p$+Pb collisions.

8 data tables

The per-jet charged particle yield in pPb and pp collisions for hadrons near a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).

The per-jet charged particle yield in pPb and pp collisions for hadrons opposite to a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} > 7\pi/8$).

The per-jet charged particle yield in pPb and pp collisions for hadrons near a $p_{T}^{\textrm{jet}} > 60~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).

More…

Version 2
K$^{0}_{\rm S}$- and (anti-)$\Lambda$-hadron correlations in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 945, 2021.
Inspire Record 1891391 DOI 10.17182/hepdata.114015

Two-particle azimuthal correlations are measured with the ALICE apparatus in pp collisions at $\sqrt{s} = 13$ TeV to explore strangeness- and multiplicity-related effects in the fragmentation of jets and the transition regime between bulk and hard production, probed with the condition that a strange meson (K$^{0}_{\rm S}$) or baryon ($\Lambda$) with transverse momentum $p_{\rm T} > 3$ GeV/c is produced. Azimuthal correlations between kaons or $\Lambda$ hyperons with other hadrons are presented at midrapidity for a broad range of the trigger ($3 < p_{\rm T}^{\rm trigg} < 20$ GeV/$c$) and associated particle $p_{\rm T}$ (1 GeV/$c$$< p_{\rm T}^{\rm assoc} < p_{\rm T}^{\rm trigg}$), for minimum-bias events and as a function of the event multiplicity. The near- and away-side peak yields are compared for the case of either K$^{0}_{\rm S}$ or $\Lambda$($\overline{\Lambda}$) being the trigger particle with that of inclusive hadrons (a sample dominated by pions). In addition, the measurements are compared with predictions from PYTHIA 8 and EPOS LHC event generators.

162 data tables

Two-dimensional $K_S^0$-h correlation function with $3<p_{\mathrm{T}}^{\mathrm{trigg}}< 4 \mathrm{GeV}/c$ and $1 \mathrm{GeV}/c<p_{\mathrm{T}}^{\mathrm{assoc}}< p_{\mathrm{T}}^{\mathrm{trigg}} $

Two-dimensional $K_S^0$-h correlation function with $3<p_{\mathrm{T}}^{\mathrm{trigg}}< 4 \mathrm{GeV}/c$ and $1 \mathrm{GeV}/c<p_{\mathrm{T}}^{\mathrm{assoc}}< p_{\mathrm{T}}^{\mathrm{trigg}} $

$\Delta\varphi$ projection of h-h correlation function with $3<p_{\mathrm{T}}^{\mathrm{trigg}}< 4 \mathrm{GeV}/c$ and $1 \mathrm{GeV}/c<p_{\mathrm{T}}^{\mathrm{assoc}}< p_{\mathrm{T}}^{\mathrm{trigg}} $

More…

Version 2
Measurement of the Bottom contribution to non-photonic electron production in $p+p$ collisions at $\sqrt{s} $=200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 202301, 2010.
Inspire Record 860571 DOI 10.17182/hepdata.101352

The contribution of $B$ meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in $p+p$ collisions at $\sqrt{s} =$ 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted $B$ decay contribution is approximately 50% at a transverse momentum of $p_{T} \geq 5$ GeV/$c$. These measurements constrain the nuclear modification factor for electrons from $B$ and $D$ meson decays. The result indicates that $B$ meson production in heavy ion collisions is also suppressed at high $p_{T}$.

3 data tables

Distributions of the azimuthal angle between nonphotonic electrons and charged hadrons normalized per nonphotonic electron trigger. The trigger electron has (top) $2.5 < p_{T} < 3.5$ GeV/$c$ and (bottom) $5.5 < p_{T} < 6.5$ GeV/$c$. The curves represent PYTHIA calculations for $D$ (dotted curve) and $B$ (dashed curve) decays. The fit result is shown as the black solid curve.

(a) Background-subtracted invariant mass distribution of $K$ pairs requiring at least one nonphotonic electron trigger in the event. The solid line is a Gaussian fit to the data near the peak region. (b) Distribution of the azimuthal angle between nonphotonic electron (positron) trigger particles and $D^{0}$ ($\bar{D}^{0}$). The solid (dashed) line is a fit of the correlation function from PYTHIA (MC$@$NLO) simulations to the data points.

Transverse momentum dependence of the relative contribution from $B$ mesons ($r_{B}$) to the nonphotonic electron yields. Error bars are statistical and brackets are systematic uncertainties. The solid curve is the FONLL calculation [14]. Theoretical uncertainties are indicated by the dashed curves.


Version 2
Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

The NA61/SHINE collaboration Aduszkiewicz, A. ; Ali, Y. ; Andronov, E. ; et al.
Eur.Phys.J.C 76 (2016) 635, 2016.
Inspire Record 1395611 DOI 10.17182/hepdata.76900

Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and \$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume.

14 data tables

Energy dependence of $\Delta[P_{T},N]$ for three charge selections

Energy dependence of $\Delta[P_{T},N]$ for three charge selections

Energy dependence of $\Sigma[P_{T},N]$ for three chrge selections

More…

Correlated long-range mixed-harmonic fluctuations measured in $pp$, $p$+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 789 (2019) 444-471, 2019.
Inspire Record 1681154 DOI 10.17182/hepdata.83969

Correlations of two flow harmonics $v_n$ and $v_m$ via three- and four-particle cumulants are measured in 13 TeV $pp$, 5.02 TeV $p$+Pb, and 2.76 TeV peripheral Pb+Pb collisions with the ATLAS detector at the LHC. The goal is to understand the multi-particle nature of the long-range collective phenomenon in these collision systems. The large non-flow background from dijet production present in the standard cumulant method is suppressed using a method of subevent cumulants involving two, three and four subevents separated in pseudorapidity. The results show a negative correlation between $v_2$ and $v_3$ and a positive correlation between $v_2$ and $v_4$ for all collision systems and over the full multiplicity range. However, the magnitudes of the correlations are found to depend strongly on the event multiplicity, the choice of transverse momentum range and collision system. The relative correlation strength, obtained by normalisation of the cumulants with the $\langle v_n^2\rangle$ from a two-particle correlation analysis, is similar in the three collision systems and depends weakly on the event multiplicity and transverse momentum. These results based on the subevent methods provide strong evidence of a similar long-range multi-particle collectivity in $pp$, $p$+Pb and peripheral Pb+Pb collisions.

60 data tables

The symmetric cumulant $sc_{2,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV

The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV

The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

More…

Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p+p interactions at the CERN Super Proton Synchrotron

The NA61/SHINE collaboration Aduszkiewicz, A. ; Ali, Y. ; Andronov, E. ; et al.
Eur.Phys.J.C 77 (2017) 59, 2017.
Inspire Record 1489238 DOI 10.17182/hepdata.76899

Results on two-particle $\Delta\eta\Delta\phi$ correlations in inelastic p+p interactions at 20, 31, 40, 80, and 158~GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the EPOS and UrQMD models.

20 data tables

Two-particle correlation function C(Delta eta, Delta phi) for all charge pairs in inelastic p+p interactions at 20 GeV/c.

Two-particle correlation function C(Delta eta, Delta phi) for all charge pairs in inelastic p+p interactions at 31 GeV/c.

Two-particle correlation function C(Delta eta, Delta phi) for all charge pairs in inelastic p+p interactions at 40 GeV/c.

More…

Measurement of the Inelastic Proton-Proton Cross Section at $\sqrt{s} = 13$ TeV with the ATLAS Detector at the LHC

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 117 (2016) 182002, 2016.
Inspire Record 1468167 DOI 10.17182/hepdata.74822

This Letter presents a measurement of the inelastic proton-proton cross section using 60 $\mu$b$^{-1}$ of $pp$ collisions at a center-of-mass energy $\sqrt{s}$ of $13$ TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region ($2.07<|\eta|<3.86$) of the detector. A cross section of $68.1\pm 1.4$ mb is measured in the fiducial region $\xi=M_X^2/s>10^{-6}$, where $M_X$ is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this $\xi$ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with $M_X>13$ GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross-section of $78.1 \pm 2.9$ mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

1 data table

The measured and extrapolated inelastic cross section. The statistical uncertainty is negligible and is therefore displayed as zero. The first systematic uncertainty is the experimental systematic uncertainty apart from the luminosity, the second is the luminosity uncertainty, and the third is the extrapolation uncertainty.


Femtoscopy of pp collisions at sqrt{s}=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Rev.D 84 (2011) 112004, 2011.
Inspire Record 884741 DOI 10.17182/hepdata.74220

We report on the high statistics two-pion correlation functions from pp collisions at $\sqrt{s}=0.9$ TeV and $\sqrt{s}$=7 TeV, measured by the ALICE experiment at the Large Hadron Collider. The correlation functions as well as the extracted source radii scale with event multiplicity and pair momentum. When analyzed in the same multiplicity and pair transverse momentum range, the correlation is similar at the two collision energies. A three-dimensional femtoscopic analysis shows an increase of the emission zone with increasing event multiplicity as well as decreasing homogeneity lengths with increasing transverse momentum. The latter trend gets more pronounced as multiplicity increases. This suggests the development of space-momentum correlations, at least for collisions producing a high multiplicity of particles. We consider these trends in the context of previous femtoscopic studies in high-energy hadron and heavy-ion collisions, and discuss possible underlying physics mechanisms. Detailed analysis of the correlation reveals an exponential shape in the outward and longitudinal directions, while the sideward remains a Gaussian. This is interpreted as a result of a significant contribution of strongly decaying resonances to the emission region shape. Significant non-femtoscopic correlations are observed, and are argued to be the consequence of "mini-jet"-like structures extending to low $p_{\rm T}$. They are well reproduced by the Monte-Carlo generators and seen also in $\pi^+\pi^-$ correlations.

14 data tables

Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.

Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.

Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.

More…