Forward production of charged pions with incident protons on nuclear targets at the CERN PS

The HARP collaboration Apollonio, M. ; Artamonov, A. ; Bagulya, A. ; et al.
Phys.Rev.C 80 (2009) 035208, 2009.
Inspire Record 826544 DOI 10.17182/hepdata.53810

Measurements of the double-differential charged pion production cross-section in the range of momentum 0.5 GeV/c < p < 8.0 GeV/c and angle 0.025 rad < theta <0.25 rad in collisions of protons on beryllium, carbon, nitrogen, oxygen, aluminium, copper, tin, tantalum and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles were identified by an elaborate system of beam detectors. The data were taken with thin targets of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward system of the HARP experiment. Results are obtained for the double-differential cross section mainly at four incident proton beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). Measurements are compared with the GEANT4 and MARS Monte Carlo generators. A global parametrization is provided as an approximation of all the collected datasets which can serve as a tool for quick yields estimates.

91 data tables

No description provided.

No description provided.

No description provided.

More…

Comparison of large-angle production of charged pions with incident protons on cylindrical long and short targets

The HARP collaboration Apollonio, M. ; Artamonov, A. ; Bagulya, A. ; et al.
Phys.Rev.C 80 (2009) 065204, 2009.
Inspire Record 830148 DOI 10.17182/hepdata.54193

The HARP collaboration has presented measurements of the double-differential pi+/pi- production cross-section in the range of momentum 100 MeV/c <= p 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad with proton beams hitting thin nuclear targets. In many applications the extrapolation to long targets is necessary. In this paper the analysis of data taken with long (one interaction length) solid cylindrical targets made of carbon, tantalum and lead is presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams of protons with momenta 5 GeV/c, 8 GeV/c and 12 GeV/c. The tracking and identification of the produced particles were performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident protons were identified by an elaborate system of beam detectors. Results are obtained for the double-differential yields per target nucleon d2 sigma / dp dtheta. The measurements are compared with predictions of the MARS and GEANT4 Monte Carlo simulations.

54 data tables

Differential cross section for PI+ production with a C target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.

Differential cross section for PI+ production with a C target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.

Differential cross section for PI+ production with a C target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.

More…

Large-angle production of charged pions by 3 GeV/c - 12.9 GeV/c protons on beryllium, aluminium and lead targets

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Eur.Phys.J.C 54 (2008) 37-60, 2008.
Inspire Record 761543 DOI 10.17182/hepdata.51357

Measurements of the double-differential $\pi^{\pm}$ production cross-section in the range of momentum $100 \MeVc \leq p &lt; 800 \MeVc$ and angle $0.35 \rad \leq \theta &lt; 2.15 \rad$ in proton--beryllium, proton--aluminium and proton--lead collisions are presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12.9 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections at six incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc, 8.9 \GeVc (Be only), 12 \GeVc and 12.9 \GeVc (Al only)) and compared to previously available data.

54 data tables

Double-differential cross section for PI+ production from BE in the LAB system for PI+ polar angle from 0.35 to 0.55 radians.

Double-differential cross section for PI+ production from BE in the LAB system for PI+ polar angle from 0.55 to 0.75 radians.

Double-differential cross section for PI+ production from BE in the LAB system for PI+ polar angle from 0.75 to 0.95 radians.

More…

Subthreshold antiproton production in p A, d A and alpha A reactions.

Sugaya, Y. ; Ashery, D. ; Chiba, J. ; et al.
Nucl.Phys.A 634 (1998) 115-140, 1998.
Inspire Record 466882 DOI 10.17182/hepdata.36236

An enormous enhancement of antiproton production in deuteron- and α-induced reactions has been observed in the subthreshold energy region between 2 and 5 GeV/nucleon. Antiprotons produced at 5.1° with a momentum range of between 1.0 and 2.5 GeV/ c were measured by a beam-line spectrometer and identified by the time-of-flight method. The production cross sections in the deuteron- and α-induced reactions at an incident energy of 3.5 GeV/nucleon were 2 and 3 orders of magnitude larger than those in proton-induced reaction at the same energy. The enhancement in light-ion reactions could not be explained by the internal motion in the projectile and target nuclei. The target-mass dependence (C, Al, Cu and Pb) of the cross sections has also been studied. Further, the cross sections of π and K productions were measured.

74 data tables

No description provided.

No description provided.

No description provided.

More…

Production of Pions and Light Fragments at Large Angles in High-Energy Nuclear Collisions

Nagamiya, S. ; Lemaire, M.C. ; Moller, E. ; et al.
Phys.Rev.C 24 (1981) 971-1009, 1981.
Inspire Record 169971 DOI 10.17182/hepdata.26341

Inclusive cross sections for production of π+, π−, p, d, H3, He3, and He4 have been measured at laboratory angles from 10° to 145° in nuclear collisions of Ne + Naf, Ne + Cu, and Ne + Pb at 400 MeV/nucleon, C + C, C + Pb, Ne + NaF, Ne + Cu, Ne + Pb, Ar + KCl, and Ar + Pb at 800 MeV/nucleon, and Ne + NaF and Ne + Pb at 2.1 GeV/nucleon. The production of light fragments in proton induced collisions at beam energies of 800 MeV and 2.1 GeV has also been measured in order to allow us to compare these processes. For equal-mass nuclear collisions the total integrated yields of nuclear charges are well explained by a simple participant-spectator model. For 800 MeV/nucleon beams the energy spectra of protons at c.m. 90° are characterized by a "shoulder-arm" type of spectrum shape with an exponential falloff at high energies, whereas those of pions are of a simple exponential type. The inverse of the exponential slope, E0, for protons is systematically larger than that for pions. This value of E0 is larger for heavier-mass projectiles and targets. It also increases monotonically with the beam energy. The angular anisotropy of protons is larger than that of pions. The yield ratio of π− to total nuclear charge goes up with the beam energy, whereas the yields of composite fragments decrease. The ratio of low-energy π− to π+, as well as that of H3 to He3, is larger than the neutron to proton ratio of the system. The spectrum shape of the composite fragments with mass number A is explained very well by the Ath power of the observed proton spectra. The sizes of the interaction region are evaluated from the observed coalescence coefficients. The radius obtained is typically 3-4 fm. The yield ratio of composite fragments to protons strongly depends on the projectile and target masses and the beam energy, but not on the emission angle of the fragments. These results are compared with currently available theoretical models. NUCLEAR REACTIONS Ne + NaF, Ne + Cu, Ne + Pb, EA=400 MeV/nucleon; C + C, C + Pb, Ne + NaF, Ne + Cu, Ne + Pb, Ar + KCl, Ar + Pb, EA=800 MeV/nucleon; Ne + NaF, Ne + Pb, EA=2100 MeV/nucleon; p + C, p+ NaF, p + KCl, p + Cu, p + Pb, E=800 MeV; p + C, p + NaF, p + KCl, p + Cu, p + Pb, E=2100 MeV; measured σ(p,θ) for π+, π−, p, d, H3, He3, and He4.

5 data tables

No description provided.

No description provided.

No description provided.

More…