Anti-proton-deuteron elastic scattering between 1.60 and 2.00 gev/c

Ming, Ma.Z. ; Smith, G.A. ;
Phys.Rev.Lett. 27 (1971) 344-347, 1971.
Inspire Record 68950 DOI 10.17182/hepdata.3515

We have studied antiproton-deuteron elastic scattering between 1.60 and 2.00 GeV/c incident momenta. The differential cross sections may be characterized by a very steep forward peak (with b∼43 GeV−2) and a prominent break near −t∼0.2 GeV2. The results are used to test the validity of Glauber's multiple-scattering theory. Within the experimental range of measurements (−t between 0.028 and 0.46 GeV2), the theory provides a good qualitative description of the data.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic anti-proton-deuteron scattering below 1.0 gev/c

Caro, D.E. ; Gold, E. ; Klein, A.G. ; et al.
Nucl.Phys.B 52 (1973) 239-247, 1973.
Inspire Record 84236 DOI 10.17182/hepdata.32679

We present differential cross sections for elastic p d scattering at beam momenta 0.735 and 0.940 GeV/ c and momentum transfers in the range 0.04<| t |<0.5(GeV/ c ) 2 . The p d elastic differential cross section is expressed in terms of a deutron form factor and the I =0 t -channel exchange N N amplitudes, enabling us to isolate the corresponding I =0 t -channel exchange cross sections.

2 data tables

DIFFERENTIAL CROSS SECTION SLOPE, ALLOWING FOR DEUTERON FORM-FACTOR.

No description provided.


Anti-proton - deuteron low-energy cross-section

Bizzarri, R. ; Guidoni, P. ; Marcelja, F. ; et al.
Nuovo Cim.A 22 (1974) 225-250, 1974.
Inspire Record 80565 DOI 10.17182/hepdata.37735

About 45000 interactions of antiprotons of kinetic energy between 57 and 170 MeV have been measured in a deuterium bubble chamber. Total and annihilation cross-sections have been determined at 9 values of the antiproton energy together with the differential crosssection dσ/dt for scattering events. In spite of the peculiar behaviour of the deuteron target at these low energies a reliable measure of the antiproton-neutron annihilation cross-section has been obtained.

2 data tables

INELASTIC (ANNILATION + CHARGE EXCHANGE), SCATTERING (ELASTIC + INELASTIC) AND TOTAL CROSS SECTIONS. AUTHORS ALSO GIVE TOPOLOGICAL DECOMPOSITION OF THESE CROSS SECTIONS.

SCATTERED ANTIPROTON ANGULAR DISTRIBUTION. THE OPTICAL POINT AT T=0 IS CALCULATED FROM THE TOTAL CROSS SECTION. SEPARATION INTO SCATTERING ON PROTONS AND ON NEUTRONS IS IMPOSSIBLE.


Elastic anti-p d scattering at 5.55 gev/c incident momentum

Braun, Henri ; Fridman, A. ; Jegham, E. ; et al.
Nucl.Phys.B 54 (1973) 61-77, 1973.
Inspire Record 84177 DOI 10.17182/hepdata.32581

Based on 150 000 photographs taken at the ZGS with the 30 inch deuterium-filled chamber we present an analysis of the elastic p d scattering reaction. Due to unrecoreded small deuteron recoils we were only able to measure the elastic cross section in the four-momentum region | t | > 0.03 (GeV/ c ) 2 . Extrapolation towards small | t | by two different methods gave us two compatible estimates of the total elastic cross section. The differential cross section was analyzed by means of the Glauber formalism both with and without the effects due to the D-wave part of the deuteron wave function. The differential cross sections of np at 5.4 GeV/ c and pn deduced from our data were compared and exhibit a crossover phenomenon.

2 data tables

CALCULATED USING TOTAL ELASTIC SIG(-T > 0.03 GEV**2) = 7.2 +- 0.4. THE SMALL ANGLE SCATTERING APPROXIMATION HOLDS: D(SIG)/DOMEGA(RF=LAB) = (P**2/PI)*D(SIG)/DT.

INTEGRATED CROSS SECTION USING EITHER EXPONENTIAL EXTRAPOLATION OR GLAUBER MODEL FIT FOR -T < 0.03 GEV**2.


A formation study of n anti-n interactions between 1.51 and 2.90 gev/c. i. topological and reaction cross-sections

Eastman, P.S. ; Ming, Ma.Z. ; Oh, B.Y. ; et al.
Nucl.Phys.B 51 (1973) 29-56, 1973.
Inspire Record 84299 DOI 10.17182/hepdata.32706

A systematic study of p p and p d topological and reaction cross sections between 1.51 and 2.90 GeV/ c has been completed. The data have been analysed in relation to the three known structures at c.m. N N energies of 2190, 2350 and 2375 MeV. The data suggest that four- and six-pion annihilations of antiprotons on neutrons may be the source of the 2350 MeV effect. Further data below 1.60 GeV/ c are required to verify this tentative conclusion.

3 data tables

No description provided.

INCLUDING 3 PCT SYSTEMATIC ERROR.

No description provided.