Measurement of the inclusive $t\bar{t}$ production cross section in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV and determination of the top quark pole mass

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev. D94 (2016) 092004, 2016.
Inspire Record 1463281 DOI 10.17182/hepdata.78547

The inclusive cross section of top quark-antiquark pairs produced in pp¯ collisions at s=1.96  TeV is measured in the lepton+jets and dilepton decay channels. The data sample corresponds to 9.7  fb-1 of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Employing multivariate analysis techniques we measure the cross section in the two decay channels and we perform a combined cross section measurement. For a top quark mass of 172.5 GeV, we measure a combined inclusive top quark-antiquark pair production cross section of σtt¯=7.26±0.13(stat)-0.50+0.57(syst)  pb which is consistent with standard model predictions. We also perform a likelihood fit to the measured and predicted top quark mass dependence of the inclusive cross section, which yields a measurement of the pole mass of the top quark. The extracted value is mt=172.8±1.1(theo)-3.1+3.3(exp)  GeV.

1 data table

The measured combined inclusive $t\bar{t}$ cross section as a function of the top quark MC mass with statistical and systematic uncertainties given separately.


Measurement of the forward–backward asymmetry of top-quark and antiquark pairs using the full CDF Run II data set

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev. D93 (2016) 112005, 2016.
Inspire Record 1424841 DOI 10.17182/hepdata.77054

We measure the forward–backward asymmetry of the production of top-quark and antiquark pairs in proton-antiproton collisions at center-of-mass energy s=1.96  TeV using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of 9.1  fb-1. The asymmetry is characterized by the rapidity difference between top quarks and antiquarks (Δy) and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be AFBtt¯=0.12±0.13, consistent with the expectations from the standard model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive AFBtt¯ in both final states yields AFBtt¯=0.160±0.045, which is consistent with the SM predictions. We also measure the differential asymmetry as a function of Δy. A linear fit to AFBtt¯(|Δy|), assuming zero asymmetry at Δy=0, yields a slope of α=0.14±0.15, consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of AFBtt¯(|Δy|) in the two final states is α=0.227±0.057, which is 2.0σ larger than the SM prediction.

3 data tables

Bin centroids and the differential $A_{\rm{FB}}^{t\bar{t}}$ in the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurement in the lepton+jets final state.

Bin centroids and the differential $A_{\rm{FB}}^{t\bar{t}}$ in the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurement in the dilepton final state.

The eigenvalues and eigenvectors for the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurements in both the lepton+jets and the dilepton final states. Each row contains first an eigenvalue, then the error eigenvector that corresponds to that eigenvalue.


Measurement of differential $t\bar{t}$ production cross sections in $p\bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev. D90 (2014) 092006, 2014.
Inspire Record 1278493 DOI 10.17182/hepdata.64755
4 data tables

The inclusive TOP TOPBAR production cross section.

The differential cross section as a function of the invariant mass of the top quark-antiquark pair, M(TOP + TOPBAR).

The differential cross section as a function of the absolute rapidity of the top quark/antiquark, ABS(YRAP(TOP/TOPBAR)).

More…

Study of Top-Quark Production and Decays involving a Tau Lepton at CDF and Limits on a Charged-Higgs Boson Contribution

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev. D89 (2014) 091101, 2014.
Inspire Record 1282899 DOI 10.17182/hepdata.64710

We present an analysis of top-antitop quark production and decay into a tau lepton, tau neutrino, and bottom quark using data from $9 {\rm fb}^{-1}$ of integrated luminosity at the Collider Detector at Fermilab. Dilepton events, where one lepton is an energetic electron or muon and the other a hadronically-decaying tau lepton, originating from proton-antiproton collisions at $\sqrt{s} = 1.96 TeV$ are used. A top-antitop quark production cross section of $8.1 \pm 2.1 {\rm pb}$ is measured, assuming standard-model top-quark decays. By separately identifying for the first time the single-tau and the ditau components, we measure the branching fraction of the top quark into tau lepton, tau neutrino, and bottom quark to be $(9.6 \pm 2.8) %$. The branching fraction of top-quark decays into a charged Higgs boson and a bottom quark, which would imply violation of lepton universality, is limited to be less than $5.9%$ at $95%$ confidence level.

3 data tables

The top-antitop quark production cross section measured assuming standard-model top-quark decays, TOP --> W BOTTOM.

The branching fraction of the top quark into a tau lepton, a tau neutrino and a bottom quark.

The ratio of leptonic top branching ratios, 2 * BR(TOP --> TAU NUTAU BOTTOM) / ( BR(TOP --> E NUE BOTTOM) + BR(TOP --> MU NUMU BOTTOM) ).


Measurement of the Differential Cross Section $d{\sigma}/d(\cos {\theta}t)$ for Top-Quark Pair Production in $p-\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 111 (2013) 182002, 2013.
Inspire Record 1238100 DOI 10.17182/hepdata.64392

We report a measurement of the differential cross section, d{\sigma}/d(cos {\theta}t), for top-quark-pair production as a function of the top-quark production angle in proton-antiproton collisions at sqrt{s} = 1.96 TeV. This measurement is performed using data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.4/fb. We employ the Legendre polynomials to characterize the shape of the differential cross section at the parton level. The observed Legendre coefficients are in good agreement with the prediction of the next-to-leading-order standard-model calculation, with the exception of an excess linear-term coefficient, a1 = 0.40 +- 0.12, compared to the standard-model prediction of a1 = 0.15^{+0.07}_{-0.03}.

1 data table

The parton-level Legendre moments for the measured angular distribution of the momentum direction of the t-quark from the momentum direction of the incoming proton.


Measurement of the forward-backward asymmetry in top quark-antiquark production in ppbar collisions using the lepton+jets channel

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev. D90 (2014) 072011, 2014.
Inspire Record 1293918 DOI 10.17182/hepdata.64123
2 data tables

Production-level forward-backward asymmetry as a function of the absolute difference in rapidity of the top quark and antiquark. The measured values are calibrated and listed with their total uncertainties. The theoretical predictions are based on MC@NLO simulation.

Production-level forward-backward asymmetry as a function of the invariant mass of the top quark-antiquark system. The measured values are calibrated and listed with their total uncertainties. The theoretical predictions are based on MC@NLO simulation.


First Measurement of the t anti-t Differential Cross Section d sigma/dM(t anti-t) in p anti-p Collisions at s**(1/2)=1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.Lett. 102 (2009) 222003, 2009.
Inspire Record 815615 DOI 10.17182/hepdata.52377

We present a measurement of the $\ttbar$ differential cross section with respect to the $\ttbar$ invariant mass, dSigma/dMttbar, in $\ppbar$ collisions at $\sqrt{s}=1.96$ TeV using an integrated luminosity of $2.7\invfb$ collected by the CDF II experiment. The $\ttbar$ invariant mass spectrum is sensitive to a variety of exotic particles decaying into $\ttbar$ pairs. The result is consistent with the standard model expectation, as modeled by \texttt{PYTHIA} with \texttt{CTEQ5L} parton distribution functions.

2 data tables

The measured differential cross section. The first error is the statistical plus jet energy scale uncertainty and the DSYS is the systematic error excluding the uncertainty in the luminosity.

The integrated cross section with statistical plus jet energy scale errors.


Measurement of the $t\bar{t}$ Production Cross Section in $p\bar{p}$ Collisions at sqrt(s)=1.96 TeV using Soft Electron b-Tagging

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev. D81 (2010) 092002, 2010.
Inspire Record 846167 DOI 10.17182/hepdata.56640

We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using a data sample corresponding to 1.7/fb of integrated luminosity collected with the Collider Detector at Fermilab. We reconstruct ttbar events in the lepton+jets channel. The dominant background is the production of W bosons in association with multiple jets. To suppress this background, we identify electrons from the semileptonic decay of heavy-flavor jets. We measure a production cross section of 7.8 +/- 2.4 (stat) +/- 1.6 (syst) +/- 0.5 (lumi) pb. This is the first measurement of the top pair production cross section with soft electron tags in Run II of the Tevatron.

1 data table

Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


Measurement of the Top Pair Production Cross Section in the Dilepton Decay Channel in $p\bar{p}$ Collisions at $\sqrt{s}= 1.96$ TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev. D82 (2010) 052002, 2010.
Inspire Record 845783 DOI 10.17182/hepdata.56641

A measurement of the $\ttbar$ production cross section in $\ppbar$ collisions at $\sqrt{{\rm s}}$ = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb$^{-1}$ is: $\sigma_{\ttbar}$ = 6.27 $\pm$ 0.73(stat) $\pm$ 0.63(syst) $\pm$ 0.39(lum) pb. for an assumed top mass of 175 GeV/$c^{2}$.

1 data table

Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


Measurement of the $t\bar{t}$ Production Cross Section in 2 fb$^{-1}$ of $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV Using Lepton Plus Jets Events with Soft Muon b-Tagging

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev. D79 (2009) 052007, 2009.
Inspire Record 811890 DOI 10.17182/hepdata.57018

We present a measurement of the $\ttbar$ production cross section in $\ppbar$ collisions at $\sqrt{s}=1.96$ TeV using events containing a high transverse momentum electron or muon, three or more jets, and missing transverse energy. Events consistent with $\ttbar$ decay are found by identifying jets containing candidate heavy-flavor semileptonic decays to muons. The measurement uses a CDF Run II data sample corresponding to $2 \mathrm{fb^{-1}}$ of integrated luminosity. Based on 248 candidate events with three or more jets and an expected background of $79.5\pm5.3$ events, we measure a production cross section of $9.1\pm 1.6 \mathrm{pb}$.

1 data table

Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


Measurement of the $t\bar{t}$ Production Cross Section with an in situ Calibration of $b$-jet Identification Efficiency

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev. D83 (2011) 071102, 2011.
Inspire Record 862617 DOI 10.17182/hepdata.56857

A measurement of the top-quark pair-production cross section in ppbar collisions at sqrt{s}=1.96 TeV using data corresponding to an integrated luminosity of 1.12/fb collected with the Collider Detector at Fermilab is presented. Decays of top-quark pairs into the final states e nu + jets and mu nu + jets are selected, and the cross section and the b-jet identification efficiency are determined using a new measurement technique which requires that the measured cross sections with exactly one and multiple identified b-quarks from the top-quark decays agree. Assuming a top-quark mass of 175 GeV/c^2, a cross section of 8.5+/-0.6(stat.)+/-0.7(syst.) pb is measured.

1 data table

Measured cross section assuming top mass of 175 GeV.


Measurement of the Top Quark Mass and $p\bar{p}$ -> $t\bar{t}$ Cross Section in the All-Hadronic Mode with the CDFII Detector

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev. D81 (2010) 052011, 2010.
Inspire Record 844530 DOI 10.17182/hepdata.56660

We present a measurement of the top quark mass and of the top-antitop pair production cross section using p-pbar data collected with the CDFII detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb-1. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 +- 2.4(stat+JES) ^{+1.2}_{-1.0}(syst) GeV/c^2, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, sigma_{ttbar} = 7.2 +- 0.5(stat) +- 1.0 (syst) +- 0.4 (lum) pb, for the measured values of top quark mass and JES.

1 data table

Measured cross section for a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


A Measurement of the t anti-t Cross Section in p anti-p Collisions at s**(1/2) = 1.96-TeV using Dilepton Events with a Lepton plus Track Selection

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev. D79 (2009) 112007, 2009.
Inspire Record 816726 DOI 10.17182/hepdata.63509

This paper reports a measurement of the cross section for the pair production of top quarks in ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron. The data was collected from the CDF II detector in a set of runs with a total integrated luminosity of 1.1 fb^{-1}. The cross section is measured in the dilepton channel, the subset of ttbar events in which both top quarks decay through t -> Wb -> l nu b where l = e, mu, or tau. The lepton pair is reconstructed as one identified electron or muon and one isolated track. The use of an isolated track to identify the second lepton increases the ttbar acceptance, particularly for the case in which one W decays as W -> tau nu. The purity of the sample may be further improved at the cost of a reduction in the number of signal events, by requiring an identified b-jet. We present the results of measurements performed with and without the request of an identified b-jet. The former is the first published CDF result for which a b-jet requirement is added to the dilepton selection. In the CDF data there are 129 pretag lepton + track candidate events, of which 69 are tagged. With the tagging information, the sample is divided into tagged and untagged sub-samples, and a combined cross section is calculated by maximizing a likelihood. The result is sigma_{ttbar} = 9.6 +/- 1.2 (stat.) -0.5 +0.6 (sys.) +/- 0.6 (lum.) pb, assuming a branching ratio of BR(W -> ell nu) = 10.8% and a top mass of m_t = 175 GeV/c^2.

1 data table

Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


Dependence of the $t\bar{t}$ production cross section on the transverse momentum of the top quark

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett. B693 (2010) 515-521, 2010.
Inspire Record 842641 DOI 10.17182/hepdata.54975
2 data tables

Total cross section for TOP TOPBAR production integrating over PT.

The inclusive PT spectra for TOP TOPBAR production.


Measurement of the $t\bar{t}$ production cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV using kinematic fitting of $b-$tagged lepton + jet events

The CDF collaboration Acosta, D. ; Adelman, J. ; Affolder, T. ; et al.
Phys.Rev. D71 (2005) 072005, 2005.
Inspire Record 658758 DOI 10.17182/hepdata.41883

We report a measurement of the ttbar production cross section using the CDF II detector at the Fermilab Tevatron. The data consist of events with an energetic electron or muon, missing transverse energy, and three or more hadronic jets, at least one of which is identified as a b-quark jet by reconstructing a secondary vertex. The background fraction is determined from a fit of the transverse energy of the leading jet. Using 162+-10 /pb of data, the total cross section is found to be 6.0+-1.6(stat.)+-1.2(syst.) pb, which is consistent with the Standard Model prediction.

1 data table

Cross section for different assumed TOP quark masses.


Measurement of the $t\bar{t}$ production cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV using dilepton events

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, T. ; et al.
Phys.Rev.Lett. 93 (2004) 142001, 2004.
Inspire Record 649267 DOI 10.17182/hepdata.54901

We report a measurement of the ttbar production cross section using dilepton events with jets and missing transverse energy in ppbar collisions at a center-of-mass energy of 1.96 TeV. Using a 197 +/- 12 pb-1 data sample recorded by the upgraded Collider Detector at Fermilab, we use two complementary techniques to select candidate events. We compare the number of observed events and selected kinematical distributions with the predictions of the Standard Model and find good agreement. The combined result of the two techniques yields a ttbar production cross section of 7.0 +2.4/-2.1(stat.) +1.6/-1.1(syst.) +/- 0.4(lum.) pb.

1 data table

Measured values of cross section for a top mass of 175 GeV. The second DSYS error is the uncertainty in the luminosity.


Search for the top quark decaying to a charged Higgs boson in $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2667-2671, 1994.
Inspire Record 383998 DOI 10.17182/hepdata.50929
6 data tables

Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model parameter describing the charged Higgs decay (see text).

Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model pameter describing the charged Higgs decay (see text).

Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model pameter describing the charged Higgs decay (see text).

More…