TWO-BODY HYPERCHARGE EXCHANGE REACTIONS IN K- p AND pi+ p INTERACTIONS AT 10-GeV/c AND 16-GeV/c

The Aachen-Berlin-Bonn-CERN-Cracow-London-Vienna collaboration Girtler, P. ; Otter, G. ; Bottcher, H. ; et al.
Nucl.Phys.B 159 (1979) 397, 1979.
Inspire Record 146303 DOI 10.17182/hepdata.34626

Cross-section values or upper limits are presented for twenty-five two-body hypercharge-exchange reactions in K − p and π + p interactions at 10 and 16 GeV/ c . The 16 GeV/ c results are compared with some predictions of line-reversal plus exchange-degenerate Regge poles, of SU(3) and of the additive quark model. Agreement is found in all cases.

1 data table

No description provided.


Y* K AND Y* K* PRODUCTION IN pi+ p INTERACTIONS AT 10.3-GeV/c

Goddard, M.C. ; Key, A.W. ; Luste, G.J. ; et al.
Phys.Rev.D 19 (1979) 1350, 1979.
Inspire Record 7416 DOI 10.17182/hepdata.24321

The reactions π+p→Σ+(1385)K+ and π+p→Σ+(1385)K*+(890) are examined. The Σ+(1385)K+ differential cross section for −t′<0.5 GeV2 and spin density matrix elements agree with a Regge-pole model incorporating (nondegenerate) vector and tensor K* exchange with dominant M1 coupling. The Σ+(1385)K*+(890) density matrix elements are consistent with the quark-additivity predictions. A Y*+ at a mass of 1700 MeV is also observed in the Λπ+ mass distribution, produced opposite both K+ and K*+(890).

6 data tables

No description provided.

No description provided.

GOTTFRIED-JACKSON FRAME.

More…

Strange Particle Production in Three and Four-Body Final States of 16-GeV/c pi+- p Reactions

The AACHEN-BERLIN-BONN-CERN-CRACOW collaboration Bosetti, P. ; Grassler, H. ; Otter, G. ; et al.
Nucl.Phys.B 128 (1977) 205-218, 1977.
Inspire Record 126061 DOI 10.17182/hepdata.35256

Three- and four-body final states with strange particles are studied in π + p and π − p interactions at 16 GeV/ c . We present cross sections and investigate their energy dependence. Production mechanism, resonance production and quantum number transfer are discussed. Strong Y ∗ (1385) production is found in the reaction π + p → Λ K + π + , while the corresponding π − p reaction is dominated by production of K ∗ (890). In the NK K π channels, the K and K are produced mainly at the same vertex, i.e. non-strangeness exchange ΔS = 0 is dominant (about 75% of the cases), whereas in the Λ K ππ channels, the Λ and K are more frequently produced at opposite vertices, i.e. | ΔS | = 1 exchange is important (about 60% of the cases). Results on the polarization of the lambdas produced in the π + p reactions are given.

1 data table

No description provided.