A Measurement of $\pi^- p \to K^0(s$) $K^0(s$) $n$ at 22-{GeV}/$c$ and a Systematic Study of the 2++ Meson Spectrum

Longacre, R.S. ; Etkin, A. ; Foley, K.J. ; et al.
Phys.Lett.B 177 (1986) 223-227, 1986.
Inspire Record 230183 DOI 10.17182/hepdata.30232

A coupled channel analysis has been carried out using a new amplitude analysis of the K 0 s K 0 s system produced in the reaction π − p→K 0 s K 0 s n at 22 GeV/ c , which contained about 40 000 new events in the low- t region (| t − t min |<0.1 GeV 2 ). Here only the I G =0 + , J PC =2 ++ amplitude from this analysis is considered, together with available data from other experiments in channels with the same quantum numbers in order to determine which 2 ++ isoscalar mesons have significant pseudoscalar-pseudoscalar couplings. It is found that four poles, f(1270), f'(1525), θ(1690), and f r (1810), are needed, plus a smooth background in order to fit these data; the need for the θ(1690) depends on the J/ψ radiative decay alone, and the f r (1810) is seen only in hadronic production.

1 data table

No description provided.


Amplitude Analysis of the K0(s) K0(s) System Produced in the Reaction pi- p ---> K0(s) K0(s) n at 23-GeV/c

Etkin, A. ; Foley, K.J. ; Longacre, R.S. ; et al.
Phys.Rev.D 25 (1982) 1786, 1982.
Inspire Record 169729 DOI 10.17182/hepdata.24030

We have carried out an amplitude analysis of the KS0KS0 system produced in the reaction π−p→KS0KS0n at 23 GeV/c, based on about 15 000 events in the low-t region (|t−tmin|<0.1 GeV2). Below 1.6 GeV/c2, our favored solution is very similar to those from previous analyses. For higher masses, we observe the KS0KS0 decay of the h(2040) meson. In addition, the l=0 partial wave contains a new state, strongly coupled to KS0KS0, with parameters M=1.771−0.053+0.077 GeV/c2 and Γ=0.200−0.009+0.156 GeV/c2. Since this state is most probably I=0, we call it the S*′(1770). We find an f′f production ratio of 0.23−0.13+0.14, and branching ratios for f-meson and h(2040)-meson decays into KK¯ of (3.1−1.7+0.7)% and (0.67−0.15+0.41)%, respectively. We find, in a detailed comparison of our results with those from other experiments, that our solution is compatible with all known features of both charged and neutral KK¯ systems.

1 data table

No description provided.