Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation

The Super-Kamiokande collaboration Richard, E. ; Okumura, K. ; Abe, K. ; et al.
Phys.Rev.D 94 (2016) 052001, 2016.
Inspire Record 1401192 DOI 10.17182/hepdata.76912

A comprehensive study on the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande water Cherenkov detector is presented in this paper. The energy and azimuthal spectra of the atmospheric ${\nu}_e+{\bar{\nu}}_e$ and ${\nu}_{\mu}+{\bar{\nu}}_{\mu}$ fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the ${\nu}_e$ and ${\nu}_{\mu}$ samples at 8.0 {\sigma} and 6.0 {\sigma} significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 {\sigma} level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is also performed, and a weak indication of a correlation was seen at the 1.1 {\sigma} level, using SK I-IV data spanning a 20 year period. For particularly strong solar activity periods known as Forbush decreases, no theoretical prediction is available, but a deviation below the typical neutrino event rate is seen at the 2.4 {\sigma} level.

2 data tables

Electron neutrino flux measured by SK I-IV data. Error written in percentage including both statistical and systematic uncertainties.

Muon neutrino flux measured by SK I-IV data. Error written in percentage including both statistical and systematic uncertainties.


Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam

The T2K collaboration Abe, Ko ; Andreopoulos, Costas ; Antonova, Maria ; et al.
Phys.Rev.Lett. 116 (2016) 181801, 2016.
Inspire Record 1408741 DOI 10.17182/hepdata.73984

T2K reports its first measurements of the parameters governing the disappearance of $\bar{\nu}_\mu$ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic $\bar{\nu}_\mu$ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the $\bar{\nu}_\mu$ survival probability is expected to be minimal. Using a dataset corresponding to $4.01 \times 10^{20}$ protons on target, $34$ fully contained $\mu$-like events were observed. The best-fit oscillation parameters are $\sin^2 (\bar{\theta}_{23}) = 0.45$ and $|\Delta\bar{m}^2_{32}| = 2.51 \times 10^{-3}$ eV$^2$ with 68% confidence intervals of 0.38 - 0.64 and 2.26 - 2.80 $\times 10^{-3}$ eV$^2$ respectively. These results are in agreement with existing antineutrino parameter measurements and also with the $\nu_\mu$ disappearance parameters measured by T2K.

6 data tables

1$\sigma$ C.L. contour in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).

90% C.L. contour in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).

Best-fit point in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).

More…

First Measurement of the Muon Neutrino Charged Current Single Pion Production Cross Section on Water with the T2K Near Detector

The T2K collaboration Abe, K. ; Andreopoulos, C. ; Antonova, M. ; et al.
Phys.Rev.D 95 (2017) 012010, 2017.
Inspire Record 1465650 DOI 10.17182/hepdata.73182

The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ${\sim}0.8$ GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by $p_{\pi^+}>200$MeV/c, $p_{\mu^-}>200$MeV/c, $\cos \theta_{\pi^+}>0.3$ and $\cos \theta_{\mu^-}>0.3$. The total flux integrated $\nu_\mu$ charged current single positive pion production cross section on water in the restricted phase-space is measured to be $\langle\sigma\rangle_\phi=4.25\pm0.48 (\mathrm{stat})\pm1.56 (\mathrm{syst})\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$. The total cross section is consistent with the NEUT prediction ($5.03\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$) and 2$\sigma$ lower than the GENIE prediction ($7.68\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but over-estimates the overall cross section normalization.

8 data tables

Total $\nu_\mu$ CC1$\pi^+$ cross section on water in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$. The T2K data point is placed at the $\nu_\mu$ flux mean energy.

Unfolded $\nu_\mu$ CC1$\pi^+$ differential cross section as a function of $p_\pi$ in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$.

Unfolded $\nu_\mu$ CC1$\pi^+$ differential cross section as a function of $\cos\theta_\pi$ in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$.

More…

Measurement of high-Q**2 charged current cross sections in e+ p deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 32 (2003) 1-16, 2003.
Inspire Record 623557 DOI 10.17182/hepdata.46433

Cross sections for e^+p charged current deep inelastic scattering at a centre-of-mass energy of 318 GeV have been determined with an integrated luminosity of 60.9pb^-1 collected with the ZEUS detector at HERA. The differential cross sections dsigma/dQ^2, dsigma/dx and dsigma/dy for Q^2>200 GeV^2 are presented. In addition, d^2sigma/dxdQ^2 has been measured in the kinematic range 280 GeV^2 < Q^2 < 17000 GeV^2 and 0.008 < x < 0.42. The predictions of the Standard Model agree well with the measured cross sections. The mass of the W boson propagator is determined to be M_W=78.9 +/- 2.0 (stat.) +/- 1.8 (syst.) +2.0 -1.8 (PDF) GeV from a fit to dsigma/dQ^2. The chiral structure of the Standard Model is also investigated in terms of the (1-y)^2 dependence of the the double-differential cross section. The structure-function F_2^CC has been extracted by combining the measurements presented here with previous ZEUS results from e^-p scattering, extending the measurement obtained in a neutrino-nucleus scattering experiment to a significantly higher Q^2 region.

12 data tables

The total cross section for Q**2 > 200 GeV**2.

The differential cross section as a function of Q**2.

The differential cross section as a function of X.

More…

Jet production in charged current deep inelastic e+ p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 31 (2003) 149-164, 2003.
Inspire Record 620434 DOI 10.17182/hepdata.46434

The production rates and substructure of jets have been studied in charged current deep inelastic e+p scattering for Q**2>200 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb**-1. Inclusive jet cross sections are presented for jets with transverse energies E_T(jet) > 14 GeV and pseudorapidities in the range -1 < eta(jet) < 2. Dijet cross sections are presented for events with a jet having E_T(jet) > 14 GeV and a second jet having E_T(jet) > 5 GeV. Measurements of the mean subjet multiplicity, <n_sbj>, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations a re compared to the measurements. The value of alphas(M_Z), determined from <n_sbj> at y_cut=0.01 for jets with 25<E_T(jet)<119 GeV, is alphas(M_Z) = 0.1202 +-0.0052 (stat.) +0.0060-0.0019 (syst.) +0.0065-0.0053 (th.). The mean subjet multiplicity as a function of Q**2 is found to be consistent with that measured in NC DIS.

20 data tables

Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1995-1997 sample.

Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1999-2000 sample.

Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the combined sample.

More…

Measurement of high-Q**2 charged current cross sections in e- p deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 539 (2002) 197-217, 2002.
Inspire Record 587371 DOI 10.17182/hepdata.46582

Cross sections for e-p charged current deep inelastic scattering have been measured at a centre-of-mass energy of 318 GeV with an integrated luminosity of 16.4 pb-1 using the ZEUS detector at HERA. Differential cross-sections d\sigma/dQ2, d\sigma/dx and d\sigma/dy are presented for Q2>200 GeV2. In addition, d2\sigma/dxdQ2 was measured in the kinematic range 280 GeV2 < Q2 < 30000 GeV2 and 0.015 < x < 0.42. The predictions of the Standard Model agree well with the measured cross sections. The mass of the W boson, determined from a fit to d\sigma/dQ2, is MW=80.3 \pm 2.1 (stat.) \pm 1.2 (syst.) \pm 1.0 (PDF) GeV.

10 data tables

The differential cross section DSIG/DQ**2.

The differential cross section DSIG/DX.

The differential cross section DSIG/DY.

More…

Measurement of high-Q**2 charged-current e+ p deep inelastic scattering cross sections at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 411-428, 2000.
Inspire Record 503434 DOI 10.17182/hepdata.43950

The e^+p charged-current deep inelastic scattering cross sections, $d\sigma/dQ^2$ for Q^2 between 200 and 60000 GeV^2, and $d\sigma/dx$ and $d\sigma/dy$ for Q^2 > 200 GeV^2, have been measured with the ZEUS detector at HERA. A data sample of 47.7 pb^-1, collected at a center-of-mass energy of 300 GeV, has been used. The cross section $d\sigma/dQ^2$ falls by a factor of about 50000 as Q^2 increases from 280 to 30000 GeV^2. The double differential cross section $d^2\sigma/dxdQ^2$ has also been measured. A comparison between the data and Standard Model (SM) predictions shows that contributions from antiquarks ($\bar{u}$ and $\bar{c}$) and quarks (d and s) are both required by the data. The predictions of the SM give a good description of the full body of the data presented here. A comparison of the charged-current cross section $d\sigma/dQ^2$ with the recent ZEUS results for neutral-current scattering shows that the weak and electromagnetic forces have similar strengths for Q^2 above $M^2_W, M^2_Z$. A fit to the data for $d\sigma/dQ^2$ with the Fermi constant $G_F$ and $M_W$ as free parameters yields $G_F = (1.171 \pm 0.034 (stat.) ^{+0.026}_{-0.032} (syst.) ^{+0.016}_{-0.015} (PDF)) \times 10^{-5} GeV^{-2}$ and $M_W = 80.8 ^{+4.9}_{-4.5} (stat.) ^{+5.0}_{-4.3} (syst.) ^{+1.4}_{-1.3} (PDF) GeV$. Results for $M_W$, where the propagator effect alone or the SM constraint between $G_F$ and $M_W$ have been considered, are also presented.

11 data tables

The differential cross section DSIG/DQ**2.

The differential cross section DSIG/DX.

The differential cross section DSIG/DY.

More…

Measurement of jet shapes in high Q**2 deep inelastic scattering at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 8 (1999) 367-380, 1999.
Inspire Record 468803 DOI 10.17182/hepdata.44312

The shapes of jets with transverse energies, E_T(jet), up to 45 GeV produced in neutral- and charged-current deep inelastic e+p scattering (DIS) at Q**2 > 100 GeV**2 have been measured with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the eta-phi plane with a cone radius of one unit. The jets become narrower as E_T(jet) increases. The jet shapes in neutral- and charged-current DIS are found to be very similar. The jets in neutral-current DIS are narrower than those in resolved processes in photoproduction and closer to those in direct-photon processes for the same ranges in E_T(jet) and jet pseudorapidity. The jet shapes in DIS are observed to be similar to those in e+e- interactions and narrower than those in pbarp collisions for comparable E_T(jet). Since the jets in e+e- interactions and e+p DIS are predominantly quark initiated in both cases, the similarity in the jet shapes indicates that the pattern of QCD radiation within a quark jet is to a large extent independent of the hard scattering process in these reactions.

24 data tables

Measured differential jet shapes, corrected to the hadron level, in neutral-current DIS for jets with ET greater than 14 GeV in different etarap regions.

Measured differential jet shapes, corrected to the hadron level, in neutral-current DIS for jets with ET greater than 14 GeV in different etarap regions.

Measured differential jet shapes, corrected to the hadron level, in neutral-current DIS for jets with ET greater than 14 GeV in different etarap regions.

More…

Study of charged current e p interactions at Q**2 > 200-Gev**2 with the ZEUS detector at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 72 (1996) 47-64, 1996.
Inspire Record 420053 DOI 10.17182/hepdata.44714

Deep inelastic charged--current reactions have been studied in $e~+p$ and $e~-p$ collisions at a center of mass energy of about $300\,\gev$ in the kinematic region $Q~2\greater200\,\gev~2$ and $x\greater0.006$ using the ZEUS detector at HERA. The integrated cross sections for $Q~2\greater200\,\gev~2$ are found to be $\sigep=30.3\,{}~{+5.5}_{\mns4.2}\,{}~{+1.6}_{\mns2.6}\,{\rm pb}$ and $\sigem=54.7\,{}~{+15.9}_{\mns\chax 9.8}\,{}~{+2.8}_{\mns3.4}\,{\rm pb}$. Differential cross sections have been measured as functions of the variables $x$, $y$ and $Q~2$. From the measured differential cross sections $d\sigma/dQ~2$, the $W$ boson mass is determined to be $M_W=79\,{}~{+8} _{-7}{}~{+4}_{-4}\,\gev$. Measured jet rates and transverse energy profiles agree with model predictions. A search for charged--current interactions with a large rapidity gap yielded one candidate event, corresponding to a cross section of $\sigep(Q~2\greater200\,\gev~2;\eta_{\rm max}<2.5)=0.8\,{}_{-0.7}~ {+1.8}\,\pm0.1\,{\rm pb}$.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the e+ and e- induced charged current cross-sections at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Z.Phys.C 67 (1995) 565-576, 1995.
Inspire Record 395960 DOI 10.17182/hepdata.44972

The cross sections for the charged current processes ${e~{-}p}\rightarrow{\nu_e+hadrons}$ and, for the first time, ${e~{+}p}\rightarrow{\overline{\nu}_e+hadrons}$ are measured at HERA for transverse momenta larger than 25 GeV.

2 data tables

No description provided.

No description provided.