Search for pair production of higgsinos in events with two Higgs bosons and missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions at the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-278, 2024.
Inspire Record 2751932 DOI 10.17182/hepdata.136030

This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.

66 data tables

Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.

Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.

Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.

More…

Measurement of the associated production of a Higgs boson decaying into $b$-quarks with a vector boson at high transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 816 (2021) 136204, 2021.
Inspire Record 1810348 DOI 10.17182/hepdata.94801

The associated production of a Higgs boson with a $W$ or $Z$ boson decaying into leptons and where the Higgs boson decays to a $b\bar{b}$ pair is measured in the high vector-boson transverse momentum regime, above 250 GeV, with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 139 fb$^{-1}$, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is $0.72 ^{+0.39}_{-0.36}$ corresponding to an observed (expected) significance of 2.1 (2.7) standard deviations. Cross-sections of associated production of a Higgs boson decaying into $b$ quark pairs with a $W$ or $Z$ gauge boson, decaying into leptons, are measured in two exclusive vector boson transverse momentum regions, 250-400 GeV and above 400 GeV, and interpreted as constraints on anomalous couplings in the framework of a Standard Model effective field theory.

3 data tables

Observed correlations between the measured reduced stage-1.2 simplified template VH, V->leptons and H->bb cross sections, including both the statistical and systematic uncertainties.

Measured and predicted VH, V->leptons reduced stage-1.2 simplified template cross sections times the H->bb and V->leptons branching fractions with corresponding uncertainties. All possible Z decays into neutral and charged leptons are considered.

Linear combinations of Wilson coefficients corresponding to the principal component decomposition eigenvectors. The corresponding eigenvalues, representing in the gaussian approximation the inverse uncertainty square of the measured eigenvector, is also indicated.


Search for pair production of higgsinos in final states with at least three $b$-tagged jets in $\sqrt{s} = 13$ TeV $pp$ collisions using the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 092002, 2018.
Inspire Record 1677389 DOI 10.17182/hepdata.83418

A search for pair production of the supersymmetric partners of the Higgs boson (higgsinos $\tilde{H}$) in gauge-mediated scenarios is reported. Each higgsino is assumed to decay to a Higgs boson and a gravitino. Two complementary analyses, targeting high- and low-mass signals, are performed to maximize sensitivity. The two analyses utilize LHC $pp$ collision data at a center-of-mass energy $\sqrt{s} = 13$ TeV, the former with an integrated luminosity of 36.1 fb$^{-1}$ and the latter with 24.3 fb$^{-1}$, collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing missing transverse momentum and several energetic jets, at least three of which must be identified as $b$-quark jets. No significant excess is found above the predicted background. Limits on the cross-section are set as a function of the mass of the $\tilde{H}$ in simplified models assuming production via mass-degenerate higgsinos decaying to a Higgs boson and a gravitino. Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95% confidence level. Interpretations of the limits in terms of the branching ratio of the higgsino to a $Z$ boson or a Higgs boson are also presented, and a 45% branching ratio to a Higgs boson is excluded for $m_{\tilde{H}} \approx 400$ GeV.

16 data tables

Distribution of m(h1) for events passing the preselection criteria of the high-mass analysis.

Distribution of effective mass for events passing the preselection criteria of the high-mass analysis.

Exclusion limits on higgsino pair production. The results of the low-mass analysis are used below m(higgsino) = 300 GeV, while those of the high-mass analysis are used above. The figure shows the observed and expected 95% upper limits on the higgsino pair production cross-section as a function of m(higgsino).

More…

Search for pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2019) 030, 2019.
Inspire Record 1668124 DOI 10.17182/hepdata.82599

A search for Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is carried out with up to 36.1 $\mathrm{fb}^{-1}$ of LHC proton--proton collision data collected at $\sqrt{s}$ = 13 TeV with the ATLAS detector in 2015 and 2016. Three benchmark signals are studied: a spin-2 graviton decaying into a Higgs boson pair, a scalar resonance decaying into a Higgs boson pair, and Standard Model non-resonant Higgs boson pair production. Two analyses are carried out, each implementing a particular technique for the event reconstruction that targets Higgs bosons reconstructed as pairs of jets or single boosted jets. The resonance mass range covered is 260--3000 GeV. The analyses are statistically combined and upper limits on the production cross section of Higgs boson pairs times branching ratio to $b\bar{b}b\bar{b}$ are set in each model. No significant excess is observed; the largest deviation of data over prediction is found at a mass of 280 GeV, corresponding to 2.3 standard deviations globally. The observed 95% confidence level upper limit on the non-resonant production is 13 times the Standard Model prediction.

4 data tables

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the narrow-width scalar.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 1$.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 2$.

More…

Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in pp collisions at $\sqrt{s}=8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 776 (2018) 295-317, 2018.
Inspire Record 1632756 DOI 10.17182/hepdata.79163

This Letter presents the measurement of differential cross sections of isolated prompt photons produced in association with a b-jet or a c-jet. These final states provide sensitivity to the heavy-flavour content of the proton and aspects related to the modelling of heavy-flavour quarks in perturbative QCD. The measurement uses proton-proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of up to 20.2 fb$^{-1}$. The differential cross sections are measured for each jet flavour with respect to the transverse energy of the leading photon in two photon pseudorapidity regions: $|\eta^\gamma|<1.37$ and $1.56<|\eta^\gamma|<2.37$. The measurement covers photon transverse energies $25 < E_\textrm{T}^\gamma<400$ GeV and $25 < E_\textrm{T}^\gamma<350$ GeV respectively for the two $|\eta^\gamma|$ regions. For each jet flavour, the ratio of the cross sections in the two $|\eta^\gamma|$ regions is also measured. The measurement is corrected for detector effects and compared to leading-order and next-to-leading-order perturbative QCD calculations, based on various treatments and assumptions about the heavy-flavour content of the proton. Overall, the predictions agree well with the measurement, but some deviations are observed at high photon transverse energies. The total uncertainty in the measurement ranges between 13% and 66%, while the central $\gamma+b$ measurement exhibits the smallest uncertainty, ranging from 13% to 27%, which is comparable to the precision of the theoretical predictions.

12 data tables

Measured fiducial integrated $\gamma+b$ and $\gamma+c$ cross sections for $|\eta^\gamma|<1.37$ and $1.56<|\eta^\gamma|<2.37$.

Measured $\gamma+b$ fiducial differential cross section as a function of $E_\text{T}^\gamma$ for $|\eta^\gamma|<1.37$.

Measured $\gamma+b$ fiducial differential cross section as a function of $E_\text{T}^\gamma$ for $1.56<|\eta^\gamma|<2.37$.

More…

Search for two Higgs bosons in final states containing two photons and two bottom quarks

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 052012, 2016.
Inspire Record 1431986 DOI 10.17182/hepdata.77003

A search is presented for the production of two Higgs bosons in final states containing two photons and two bottom quarks. Both resonant and nonresonant hypotheses are investigated. The analyzed data correspond to an integrated luminosity of 19.7 inverse femtobarns of proton-proton collisions at sqrt(s) = 8 TeV collected with the CMS detector. Good agreement is observed between data and predictions of the standard model (SM). Upper limits are set at 95% confidence level on the production cross section of new particles and compared to the prediction for the existence of a warped extra dimension. When the decay to two Higgs bosons is kinematically allowed, assuming a mass scale Lambda[R] = 1 TeV for the model, the data exclude a radion scalar at masses below 980 GeV. The first Kaluza-Klein excitation mode of the graviton in the RS1 Randall-Sundrum model is excluded for masses between 325 and 450 GeV. An upper limit of 0.71 pb is set on the nonresonant two-Higgs-boson cross section in the SM-like hypothesis. Limits are also derived on nonresonant production assuming anomalous Higgs boson couplings.

3 data tables

Observed $m_\mathrm{jj}$ spectrum (black points) compared with a background estimate (black line), obtained in background only hypothesis, for HPHP category. The simulated radion resonances of $m_\mathrm{X} = 1.5$ and 2 TeV are also shown. Observed and expected 95% CL upper limits on the product of cross section and the branching fraction sigma(pp->X)*B(X->HH) obtained through a combination of the two event categories. The limits for mX = 400 GeV are shown for both Low mass and High mass signal extraction methods.

Observed and expected 95% CL upper limits on the product of cross section and the branching fraction sigma(pp->X)*B(X->HH->gamma gamma b b ) for the nonresonant BSM analysis, performed by changing the parameters $kappa_$lambda, y_t and c_2 while keeping all other parameters fixed at the SM predictions.

Signal efficiencies in the four different signal regions for the nonresonant BSM analysis, performed by changing the parameters $kappa_$lambda, y_t and c_2 while keeping all other parameters fixed at the SM predictions. The four signal regions are made in b-tag and m_HH categries, being those: "Low-purity, High-mass" (LPHM), "Low-purity, Low-mass" (LPLM), "High-purity, High-mass" (HPHM) and "High-purity, Low-mass" (HPLM).


Search for bottom squark pair production in proton--proton collisions at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 547, 2016.
Inspire Record 1472822 DOI 10.17182/hepdata.74005

The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark ($\tilde{b}_1$) is reported. The search uses 3.2 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from $b$-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95% confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric $R$-parity-conserving models in which the $\tilde{b}_1$ is the lightest squark and is assumed to decay exclusively via $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$, where $\tilde{\chi}_1^0$ is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the $\tilde{\chi}_1^0$ mass below 360 (100) GeV whilst differences in mass above 100 GeV between the $\tilde{b}_1$ and the $\tilde{\chi}_1^0$ are excluded up to a $\tilde{b}_1$ mass of 500 GeV.

37 data tables

Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.

Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.

Signal region (SR) providing the best expected sensitivity in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane.

More…

Study of $W$ boson production in association with beauty and charm

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Phys.Rev.D 92 (2015) 052001, 2015.
Inspire Record 1370436 DOI 10.17182/hepdata.73718

The associated production of a $W$ boson with a jet originating from either a light parton or heavy-flavor quark is studied in the forward region using proton-proton collisions. The analysis uses data corresponding to integrated luminosities of 1.0 and $2.0\,{\rm fb}^{-1}$ collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, respectively. The $W$ bosons are reconstructed using the $W\to\mu\nu$ decay and muons with a transverse momentum, $p_{\rm T}$, larger than 20 GeV in the pseudorapidity range $2.0<\eta<4.5$. The partons are reconstructed as jets with $p_{\rm T} > 20$ GeV and $2.2 < \eta < 4.2$. The sum of the muon and jet momenta must satisfy $p_{\rm T} > 20$ GeV. The fraction of $W+$jet events that originate from beauty and charm quarks is measured, along with the charge asymmetries of the $W\!+\!b$ and $W\!+\!c$ production cross-sections. The ratio of the $W+$jet to $Z+$jet production cross-sections is also measured using the $Z\to\mu\mu$ decay. All results are in agreement with Standard Model predictions.

1 data table

Summary of the results. All results are reported within a fiducial region that requires a jet with $p_\rm{T} > 20$ GeV in the pseudorapidity range $2.2 < \eta < 4.2$, a muon with $p_\rm{T} > 20$ GeV in the pseudorapidity range $2.0 < \eta < 4.5$, $p_\rm{T}(\mu+j) > 20$ GeV, and $\Delta R(\mu, j) > 0.5$. For $Z+$jet events both muons must fulfill the muon requirements and $60 < M(\mu\mu) < 120$ GeV; the $Z+$jet fiducial region does not require $p_\rm{T}(\mu+j) > 20$ GeV.


Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 11 (2015) 071, 2015.
Inspire Record 1380177 DOI 10.17182/hepdata.70722

A search for neutral Higgs bosons decaying into a b-bbar quark pair and produced in association with at least one additional b quark is presented. This signature is sensitive to the Higgs sector of the minimal supersymmetric standard model (MSSM) with large values of the parameter tan(beta). The analysis is based on data from proton-proton collisions at a center-of-mass energy of 8 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The results are combined with a previous analysis based on 7 TeV data. No signal is observed. Stringent upper limits on the cross section times branching fraction are derived for Higgs bosons with masses up to 900 GeV, and the results are interpreted within different MSSM benchmark scenarios, m[h,max], m[h,mod+], m[h,mod-], light-stau and light-stop. Observed 95% confidence level upper limits on tan(beta), ranging from 14 to 50, are obtained in the m[h,mod+] benchmark scenario.

3 data tables

Expected and observed 95% CL upper limits on sigma(pp->b+ H(MSSM)+X) * B(H(MSSM) -> bb) in pb as a function of m(H(MSSM)), where H(MSSM) denotes a generic Higgs-like state, as obtained from the 8 TeV data.

Expected and observed 95% CL upper limits on tan(beta) as a function of mA in the mh-max benchmark scenario for mu=+200 GeV, obtained from a combination of the 7 and 8 TeV data.

Expected and observed 95% CL upper limits on tan(beta) as a function of mA in the mh-mod+ benchmark scenario for mu=+200 GeV, obtained from a combination of the 7 and 8 TeV data.


Search for a Standard Model Higgs Boson Produced in Association with a Top-Quark Pair and Decaying to Bottom Quarks Using a Matrix Element Method

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 251, 2015.
Inspire Record 1343506 DOI 10.17182/hepdata.68402

A search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks is presented. Events with hadronic jets and one or two oppositely charged leptons are selected from a data sample corresponding to an integrated luminosity of 19.5 inverse femtobarns collected by the CMS experiment at the LHC in pp collisions at a centre-of-mass energy of 8 TeV. In order to separate the signal from the larger t t-bar + jets background, this analysis uses a matrix element method that assigns a probability density value to each reconstructed event under signal or background hypotheses. The ratio between the two values is used in a maximum likelihood fit to extract the signal yield. The results are presented in terms of the measured signal strength modifier, mu, relative to the standard model prediction for a Higgs boson mass of 125 GeV. The observed (expected) exclusion limit at a 95% confidence level is mu < 4.2 (3.3), corresponding to a best fit value mu-hat = 1.2 +1.6 -1.5.

1 data table

The best-fit values of the signal strength modifier obtained from the single lepton (SL) and dilepton (DL) channels alone,and from their combination (COMBINED). The observed 95% CL upper limit (UL) on mu are given in the third column, and are compared to the median expected limits for both the signal-plus-background and for the background-only hypotheses. For the latter, the 1sigma and 2sigma CL intervals are also given.