Energy dependence of the spin-spin correlation parameter $C_{NN}$ at 50° and 90° c.m. for pp-elastic scattering in the energy range 0.69–0.95 GeV

Efimovyh, V.A. ; Kovalev, A.I. ; Poljakov, V.V. ; et al.
Phys.Lett.B 99 (1981) 28-32, 1981.
Inspire Record 1389635 DOI 10.17182/hepdata.27135

The spin-spin correlation parameter C NN at 50° and 90° c.m. for elastic pp-scattering has been obtained in the energy range 0.69–0.95 GeV. It was found that the parameter C NN (90°) shows resonance-like structure at energies near 700 MeV. Its energy dependence does not agree with Hoshizaki's phase-shift analysis predictions. C NN (50°) agrees well with these predictions and does not show any structure within the accuracy of the measurements.

1 data table

No description provided.


Measurement of the Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons in Polarised Muon DIS

The COMPASS collaboration Alekseev, M. ; Alexakhin, V.Yu. ; Alexandrov, Yu. ; et al.
Eur.Phys.J.C 64 (2009) 171-179, 2009.
Inspire Record 824774 DOI 10.17182/hepdata.52400

The longitudinal polarisation transfer from muons to lambda and anti-lambda hyperons, D_LL, has been studied in deep inelastic scattering off an unpolarised isoscalar target at the COMPASS experiment at CERN. The spin transfers to lambda and anti-lambda produced in the current fragmentation region exhibit different behaviours as a function of x and xF . The measured x and xF dependences of D^lambda_LL are compatible with zero, while D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the frame of recent model calculations.

5 data tables

The weighted average of the spin transfers for the 2003 and 2004 data.

The XL dependence of the spin transfer from muons to the LAMBDA hyperon.

The X dependence of the spin transfer from muons to the LAMBDA hyperon.

More…

Measurement of the n p total cross section difference Delta(sigma(L))(np) at 1.39-GeV, 1.69-GeV, 1.89-GeV and 1.99-GeV

Sharov, V.I. ; Anischenko, N.G. ; Antonenko, V.G. ; et al.
Eur.Phys.J.C 37 (2004) 79-90, 2004.
Inspire Record 662636 DOI 10.17182/hepdata.43115

New accurate results of the neutron-proton spin-dependent total cross section difference $\Delta\sigma_{\mathrm L}(np)$

2 data tables

Unpolarized total cross sections.

Final results for SIG(NAME=CLL).


Measurement of the total cross-section difference Delta(sigma-L) in n p transmission at 1.19-GeV, 2.49-GeV and 3.65-GeV

Adiasevich, B.P. ; Antonenko, V.G. ; Averichev, S.A. ; et al.
Z.Phys.C 71 (1996) 65-74, 1996.
Inspire Record 416847 DOI 10.17182/hepdata.12108

Results of the total cross section differenceΔσL in anp transmission experiment at 1.19, 2.49 and 3.65 GeV incident neutron beam kinetic energies are presented. Measurements were performed at the Synchrophasotron of the Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna. Results were obtained with a polarized beam of free quasi-monochromatic neutrons passing through the new Dubna frozen spin proton target. The beam and target polarizations were oriented longitudinally. The present results were obtained at the highest energies of free polarized neutrons that can be reached at present. They extend the energy range of existing results from PSI, LAMPF and Saclay measured between 0.066 and 1.10 GeV. The new results are compared withΔσL(pn) data determined as a difference betweenΔσL(pd) andΔσL(pp) ANL-ZGS measurements. The values ofΔσL for the isospin stateI=0 were deduced using knownpp data.

2 data tables

Errors contain statistical and systematic errors added in quadrature. Axis error includes +- 0.05/0.05 contribution (An additional error due to the extrapolation towards zero solid angle).

No description provided.


Measurement of the spin rotation parameters R and A in pi- p elastic scattering at 450-MeV and 560-MeV

Abaev, V.V. ; Bazhanov, N.A. ; Bekrenev, V.S. ; et al.
Sov.J.Nucl.Phys. 48 (1988) 852-858, 1988.
Inspire Record 457307 DOI 10.17182/hepdata.17344
3 data tables

No description provided.

No description provided.

No description provided.


FIRST MEASUREMENTS OF THE SPIN ROTATION PARAMETERS R AND A IN ELASTIC PI P SCATTERING NEAR LOW LYING PION - NUCLEON RESONANCES

Bekrenev, V.S. ; Beloglazov, Yu.A. ; Gaditsky, V.G. ; et al.
JETP Lett. 44 (1986) 338-341, 1986.
Inspire Record 240633 DOI 10.17182/hepdata.16925

None

1 data table

No description provided.


ANGULAR DEPENDENCE OF THE POLARIZATION CORRELATION PARAMETER A(00NN) AND THE ASYMMETRY PARAMETER A(000N) IN ELASTIC PROTON PROTON SCATTERING AT 690-MEV - 950-MEV

Vovchenko, V.G. ; Efimovykh, V.A. ; Zhdanov, A.A. ; et al.
JETP Lett. 44 (1986) 151-154, 1986.
Inspire Record 240718 DOI 10.17182/hepdata.16827

None

2 data tables

No description provided.

No description provided.


MEASUREMENTS OF THE POLARIZATION TRANSFER PARAMETER K(N00N) IN P P SCATTERING AT 800-MEV - 970-MEV

Borisov, N.S. ; Vovchenko, V.G. ; Efimovykh, V.A. ; et al.
JETP Lett. 43 (1986) 722-725, 1986.
Inspire Record 240172 DOI 10.17182/hepdata.16828

None

1 data table

No description provided.


Investigation of the Energy Dependence of the Spin Spin Correlation in the Diproton Resonance Region

Borisov, N.S. ; Vovchenko, V.G. ; Efimovykh, V.A. ; et al.
Sov.Phys.JETP 54 (1981) 841-847, 1981.
Inspire Record 173719 DOI 10.17182/hepdata.16987

None

2 data tables

No description provided.

No description provided.


Polarization parameters A(000n) and A(00nn) in elastic proton proton scattering in the energy region 690-MeV to 890-MeV

Vovchenko, V.G. ; Efimovykh, V.A. ; Zhdanov, A.A. ; et al.
Sov.J.Nucl.Phys. 49 (1989) 446-453, 1989.
Inspire Record 292935 DOI 10.17182/hepdata.17325

None

3 data tables

Axis error includes +- 0.0/0.0 contribution (DUE TO QUAZIELASTIC BACKGROUND AND ERRORS IN POLARIZATION OF BEAM AND TARGET).

Axis error includes +- 0.0/0.0 contribution (DUE TO QUAZIELASTIC BACKGROUND AND ERRORS IN POLARIZATION OF BEAM AND TARGET).

Axis error includes +- 0.0/0.0 contribution (DUE TO QUAZIELASTIC BACKGROUND AND ERRORS IN POLARIZATION OF BEAM AND TARGET).