Measurement of the I=1/2 $K \pi$ $\mathcal{S}$-wave amplitude from Dalitz plot analyses of $\eta_c \to K \bar K \pi$ in two-photon interactions

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 93 (2016) 012005, 2016.
Inspire Record 1403544 DOI 10.17182/hepdata.76968

We study the processes $\gamma \gamma \to K^0_S K^{\pm}\pi^{\mp}$ and $\gamma \gamma \to K^+ K^- \pi^0$ using a data sample of 519~$fb^{-1}$ recorded with the BaBar detector operating at the SLAC PEP-II asymmetric-energy $e^+ e^-$ collider at center-of-mass energies at and near the $\Upsilon(nS)$ ($n = 2,3,4$) resonances. We observe $\eta_c$ decays to both final states and perform Dalitz plot analyses using a model-independent partial wave analysis technique. This allows a model-independent measurement of the mass-dependence of the $I=1/2$ $K \pi$ $\mathcal{S}$-wave amplitude and phase. A comparison between the present measurement and those from previous experiments indicates similar behaviour for the phase up to a mass of 1.5 $GeV/c^2$. In contrast, the amplitudes show very marked differences. The data require the presence of a new $a_0(1950)$ resonance with parameters $m=1931 \pm 14 \pm 22 \ MeV/c^2$ and $\Gamma=271 \pm 22 \pm 29 \ MeV$.

2 data tables

Measured amplitude and phase values for the $I=1/2$ $K \pi$ $\mathcal{S}$-wave as functions of mass obtained from the Model Independent Partial Wave Analysis (MIPWA) of $\eta_c \to K^0_{\scriptscriptstyle S} K^{\pm}\pi^{\mp}$. The amplitudes and phases in the mass interval 14 are fixed to constant values.

Measured amplitude and phase values for the $I=1/2$ $K \pi$ $\mathcal{S}$-wave as functions of mass obtained from the Model Independent Partial Wave Analysis (MIPWA) of $\eta_c \to K^+ K^- \pi^0$. The amplitudes and phases in the mass interval 14 are fixed to constant values.


ATOMIC PARITY VIOLATION MEASUREMENTS IN THE HIGHLY FORBIDDEN (6)S(1/2) - (7)S(1/2) CESIUM TRANSITION. 3. DATA ACQUISITION AND PROCESSING. RESULTS AND IMPLICATIONS

Bouchiat, M.A. ; Guena, J. ; Pottier, L. ; et al.
J.Phys.(France) 47 (1986) 1709-1730, 1986.
Inspire Record 232798 DOI 10.17182/hepdata.38588

This paper completes the detailed presentation of our PV experiment on the 6S1/2 - 7S1/2 transition in Cs. A detailed description of the data acquisition and processing is given. The results of two independent measurements made on ΔF = 0 and ΔF =1 hfs components agree, providing an important cross-check. After a complete reanalysis of systematics and calibration, the precision is slightly improved, leading to the weighted average Im Epv 1/β = - 1.52 ± 0.18 mV/cm. Later results from an independent group agree quite well. With the semi-empirical value β = (26.8 ± 0.8) a30, our result yields Epv1 = (- 0.79 ± 0.10) x 10-11 i |e|a0. Coupled with the atomic calculations, this implies that the weak nuclear charge of Cs is Qw = -68 ± 9. This value agrees with the standard electroweak theory and leads to a weak interaction angle sin2 θ W = 0.21 ± 0.04. The complementarity of these measurements with high energy experiments is illustrated.

3 data tables

Revision of the earlier experiment PL 117B, 358. (7s)2S1/2:F=4 --> (6s)2S1/2:F=4 transition.

Revision of the earlier experiment PL 134B, 463. (7s)2S1/2:F=3 --> (6s)2S1/2:F=4 transition.

Combined of the two above measurements following the philosophy: quadratic sum of the statistical and systematic uncertainties and weighting each result by the squared reciprocal of that uncertainty. (7s)2S1/2 --> (6s)2S1/2 transitions.


NEW OBSERVATION OF A PARITY VIOLATION IN CESIUM

Bouchiat, M.A. ; Guena, J. ; Pottier, L. ; et al.
Phys.Lett.B 134 (1984) 463-468, 1984.
Inspire Record 200186 DOI 10.17182/hepdata.30610

The parity violation induced by weak neutral currents is measured in a ΔF =1 hyperfine component of the 6S–7S transition of the Cs atom. The measured value ( Im E PV 1 β ) = −1.78 ± 0.26 (statistical rms deviation) ±0.12 (systematic uncertainty) mV/cm, agrees with our previous measurement in a ΔF =0 component, and constitutes an important cross-check. Our result excludes a parity violation induced by a purely axial hadronic neutral current.

1 data table

(7s)2S1/2:F=3 --> (6s)2S1/2:F=4 transition.


Observation of a Parity Violation in Cesium

Bouchiat, M.A. ; Guena, J. ; Hunter, L. ; et al.
Phys.Lett.B 117 (1982) 358, 1982.
Inspire Record 180105 DOI 10.17182/hepdata.30837

We have measured a parity violation in the 6S–7S transition of Cs in an electric field. Our result is Im E 1 pv β = -1.34 ± 0.22 ( rms statistical deviation ) ± ∼0.11 ( systematic uncertainty ) mV cm; E 1 pv is the parity violating electric dipole amplitude, ß is the vector polarizability. This result is consistent with the Weinberg-Salam prediction.

1 data table

(7s)2S1/2:F=4 --> (6s)2S1/2:F=4 transition.


Evidence for Iota (1460) Production in $\pi^- p$ Interactions at 21.4-{GeV}/$c$

Rath, M.G. ; Cason, N.M. ; Bensinger, J.R. ; et al.
Phys.Rev.Lett. 61 (1988) 802, 1988.
Inspire Record 262921 DOI 10.17182/hepdata.20086

The KS0KS0π0 system has been studied in the exclusive reaction π−p→KS0KS0π0n at 21.4 GeV/c. Evidence for the production of the f1(1285) and the η(1460) is presented. The η(1460) is produced away from minimum momentum transfer in the presence of nonresonant K*K (S-wave) production and phase-space background. The observed mass, width, and decay properties of the η(1460) are consistent with those attributed to the ι(1460) observed in radiative Jψ decay.

1 data table

No description provided.


A Measurement of $\pi^- p \to K^0(s$) $K^0(s$) $n$ at 22-{GeV}/$c$ and a Systematic Study of the 2++ Meson Spectrum

Longacre, R.S. ; Etkin, A. ; Foley, K.J. ; et al.
Phys.Lett.B 177 (1986) 223-227, 1986.
Inspire Record 230183 DOI 10.17182/hepdata.30232

A coupled channel analysis has been carried out using a new amplitude analysis of the K 0 s K 0 s system produced in the reaction π − p→K 0 s K 0 s n at 22 GeV/ c , which contained about 40 000 new events in the low- t region (| t − t min |<0.1 GeV 2 ). Here only the I G =0 + , J PC =2 ++ amplitude from this analysis is considered, together with available data from other experiments in channels with the same quantum numbers in order to determine which 2 ++ isoscalar mesons have significant pseudoscalar-pseudoscalar couplings. It is found that four poles, f(1270), f'(1525), θ(1690), and f r (1810), are needed, plus a smooth background in order to fit these data; the need for the θ(1690) depends on the J/ψ radiative decay alone, and the f r (1810) is seen only in hadronic production.

1 data table

No description provided.