Search for new phenomena using single photon events in the DELPHI detector at LEP

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 74 (1997) 577-586, 1997.
Inspire Record 415746 DOI 10.17182/hepdata.41128

Data are presented on the reaction e+e− → γ + no other detected particle at centre-of-mass energies of 89.48, 91.26 and 93.08 GeV. The cross-section for this reaction is related directly to the number of light neutrino generations which couple to the Z° boson, and to several other possible phenomena such as the production of excited neutrinos, the production of any invisible ‘X’ particle, and the magnetic moment of the tau neutrino. Based on the observed number of single photon events, the number of light neutrinos that couple to the Z° is measured to be Nv = 2.89 ± 0.38. No evidence is found for anomalous production of energetic single photons, and upper limits at 95% confidence level are determined for excited neutrino production (BR < 4 − 8 × 10−6 depending on its mass), production of an invisible ‘X’ particle (σ, < 0.1 pb for masses below 60 GeV), and the magnetic moment of the tau neutrino (< 5.1 × 10-6 μB).

3 data tables

No description provided.

Limit on an anomalous magnetic moment for tau-neutrino from '1GAMMA + nothing' events. Magnetic moment in Bohr magnetons.

Here UNSPEC is invisible particle.


Measurement of Sigma- Production Polarization and Magnetic Moment

Wah, Y.W. ; Cardello, T.R. ; Cooper, P.S. ; et al.
Phys.Rev.Lett. 55 (1985) 2551-2554, 1985.
Inspire Record 218614 DOI 10.17182/hepdata.42574

We have measured the production polarization of 265- and 310-GeV/c Σ− in the inclusive reaction p+Cu→Σ−+X using 400-GeV/c protons. The polarization was analyzed via the asymmetry in the weak decay Σ−→n+π−, and has typical values of +0.20 with respect to the direction of the cross product of the incident-proton and Σ− momenta. Using the spin-precession technique, we have determined the Σ− magnetic moment to be -1.23±0.03±0.03 nuclear magnetons, where the statistical and systematic errors are shown separately.

3 data tables

No description provided.

No description provided.

No description provided.


A Measurement of the Sigma- Magnetic Moment Using the Sigma- ---> n e- anti-neutrino and Sigma- ---> n pi- Decay Modes

Zapalac, G. ; Hsueh, S.Y. ; Muller, D. ; et al.
Phys.Rev.Lett. 57 (1986) 1526, 1986.
Inspire Record 231107 DOI 10.17182/hepdata.42694

We have used the spin-precession technique to measure the Σ− magnetic moment (μΣ). A Σ− beam with a polarization of 22% was produced by a 400-GeV proton beam striking a Cu target at nominal production angles of ±3 mrad. We simultaneously recorded 21 000 Σ−→ne−ν¯ decays and 650 000 Σ−→nπ− decays at Σ− beam momenta of 253 and 308 GeV/c. We find μΣ=−1.166±0.014±0.010 nuclear magnetons, where the quoted errors are statistical and systematic, respectively.

1 data table

No description provided.