Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 < m_{3\pi} < 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 < t' < 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

2 data tables

Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.

Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).


A Study of rho and Omega Production in pi+ p Interactions at 15.7-GeV/c

Ferguson, Merl McDonald, Jr. ;
Phys.Rev.D 36 (1987) 1961, 1987.
Inspire Record 210652 DOI 10.17182/hepdata.12775

We report the results of a study of ρ and ω production in π+p interactions at 15.7 GeV/c. The SLAC hybrid bubble-chamber facility was used to study reactions in which neutral particles are produced. Three tantalum plates inside the 40-in. bubble chamber and a large array of lead glass downstream of the chamber provided photon detection over a large solid angle. Final states with two neutral particles have been isolated with kinematic fits in which neutral pions were reconstructed in the plates and lead glass. Data from an earlier untriggered π+p bubble-chamber experiment at 15 GeV/c were used to obtain samples of events in channels which did not trigger the hybrid system. Cross sections for ρ and ω production are given for several exclusive final states. Relative ρ and ω production rates are studied. The ratio of nondiffractive ω to ρ0 production is measured to be ω/ρ0=0.44±0.07. We estimate the inclusive ω cross section to be 1.9±0.3 mb. The results are compared to the Lund model of low-pT hadronic reactions.

9 data tables

OMEGA cross sections have been corrected to allow for all decay modes.

No description provided.

No description provided.

More…

$\pi^+p$ interactions at $T_\pi = 781$ MeV

Tilger, C.A. ; Poirier, C.P. ; Alyea, E.D., Jr. ; et al.
Phys.Rev. 142 (1966) 972-976, 1966.
Inspire Record 944956 DOI 10.17182/hepdata.26684

Interactions of 781-MeV π+ mesons with protons were investigated using the Brookhaven National Laboratory 14-in. hydrogen bubble chamber. A total of 2305 events was observed. The data were normalized to a total cross section of 22.2 mb, giving partial cross sections σ(π+p→π+p)=9.5±0.5 mb, σ(π+p→π+pπ0)=9.3±0.5 mb, σ(π+p→π+π+n)=2.15±0.17 mb, and a multiple-pion-production cross section of 1.15±0.17 mb. The elastic angular distribution was obtained and is dσdω=(0.25±0.03)+(0.90±0.11)cosθc.m.+(2.57±0.24)cos2θc.m.+(0.19±0.22)cos3θc.m.−(1.73±0.34)cos4c.m.. The kinetic-energy and angular distributions of the outgoing particles in single-pion production are given. The data are compared with other experiments in this energy region and their relevance to the shoulder in the π+p total cross section near 830 MeV is discussed.

1 data table

MEASUREMENT OF THE POLARIZATION PARAMETER IN pi+ p SCATTERING FROM 750-MeV/c TO 3750-MeV/c

Johnson, Clairborne Holt, Jr. ;
UCRL-17683, 2012.
Inspire Record 1087657 DOI 10.17182/hepdata.18471

None

15 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of pi- p ---> pi0 n in the vicinity of the eta threshold

Starostin, A. ; Prakhov, S. ; Nefkens, B.M.K. ; et al.
Phys.Rev.C 72 (2005) 015205, 2005.
Inspire Record 688197 DOI 10.17182/hepdata.25171

We report a new measurement of the differential cross section for π−p→π0n from pπ=649 to 752 MeV/c, which is around the opening of the η channel (685 MeV/c). Our data support the main features of the π−p charge-exchange differential cross sections generated by the SAID πN partial-wave analysis. The opening of the η channel has a clear effect on the shape of the excitation function for dσ(π−p→π0n), which is most noticeable in the backward direction.

9 data tables

Differential cross section for incident pion momentum 649, 654 and 657 MeV.

Differential cross section for incident pion momentum 661, 666 and 669 MeV.

Differential cross section for incident pion momentum 673, 678 and 681 MeV.

More…

Measurement of pi- p ---> eta n from threshold to p (pi-) = 747-MeV/c

Prakhov, S. ; Nefkens, B.M.K. ; Allgower, C.E. ; et al.
Phys.Rev.C 72 (2005) 015203, 2005.
Inspire Record 687736 DOI 10.17182/hepdata.25215

The differential cross section for η production in reaction π−p→ηn has been measured over the full angular range at seven incident π− beam momenta from threshold to pπ−=747 MeV/c using the Crystal Ball multiphoton spectrometer. The angular distributions are S wave dominated. At 10 MeV/c above threshold, a small D-wave contribution appears that interferes with the main S wave. The total η production cross section σtot is obtained by integration of dσ/dΩ. Starting at threshold, σtot rises rapidly, as expected for S-wave-dominated production. The features of the π−p→ηn cross section are strikingly similar to those of the SU(3) flavor-related process K−p→ηΛ. Comparison of the π−p→ηn reaction is made with η photoproduction.

3 data tables

Total cross sections.

Differential cross section for the 4 lowest beam momenta.

Differential cross section for the 3 highest beam momenta.


Measurement of pi- p --> pi0 pi0 n from threshold to p(pi-) 750-MeV/c.

The Crystal Ball collaboration Prakhov, S. ; Nefkens, B.M.K. ; Allgower, C.E. ; et al.
Phys.Rev.C 69 (2004) 045202, 2004.
Inspire Record 647544 DOI 10.17182/hepdata.25355

Reaction π−p→π0π0n has been measured with high statistics in the beam momentum range 270–750MeV∕c. The data were obtained using the Crystal Ball multiphoton spectrometer, which has 93% of 4π solid angle coverage. The dynamics of the π−p→π0π0n reaction and the dependence on the beam energy are displayed in total cross sections, Dalitz plots, invariant-mass spectra, and production angular distributions. Special attention is paid to the evaluation of the acceptance that is needed for the precision determination of the total cross section σt(π−p→π0π0n). The energy dependence of σt(π−p→π0π0n) shows a shoulder at the Roper resonance [i.e., the N(1440)12+], and there is also a maximum near the N(1520)32−. It illustrates the importance of these two resonances to the π0π0 production process. The Dalitz plots are highly nonuniform; they indicate that the π0π0n final state is dominantly produced via the π0Δ0(1232) intermediate state. The invariant-mass spectra differ much from the phase-space distributions. The production angular distributions are also different from the isotropic distribution, and their structure depends on the beam energy. For beam momenta above 550MeV∕c, the density distribution in the Dalitz plots strongly depends on the angle of the outgoing dipion system (or equivalently on the neutron angle). The role of the f0(600) meson (also known as the σ) in π0π0n production remains controversial.

5 data tables

Measured total cross section. Statistical errors only.

Differential angular distributions of the 2PI0 system for the LH2 data at beam momenta 355 to 472 MeV/c. Statistical errors only.

Differential angular distributions of the 2PI0 system for the LH2 data at beam momenta 550 to 678 MeV/c. Statistical errors only.

More…

Differential cross section of the pion nucleon charge-exchange reaction pi- p --> pi0 n in the momentum range from 148-MeV/c to 323-MeV/c.

The Crystal Ball collaboration Sadler, M.E. ; Kulbardis, A. ; Abaev, V. ; et al.
Phys.Rev.C 69 (2004) 055206, 2004.
Inspire Record 646714 DOI 10.17182/hepdata.31725

Measured values of the differential cross section for pion-nucleon charge exchange are presented at momenta 148, 174, 188, 212, 238, 271, 298, and 323 MeV/c, a region dominated by the Delta resonance. Complete angular distributions were obtained using the Crystal Ball detector at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). Statistical uncertainties of the differential cross sections are typically 2-6%, exceptions being the results at the lowest momentum and at the most forward measurements of the five lowest momenta. We estimate the systematic uncertainties to be 3-6%.

3 data tables

The errors shown are statistical only.

The errors shown are statistical only.

The total charge-exchange reaction cross section as a function of pion momentum obtained by integrating the differential cross sections. The errors shown are the total and statistical errors.


Measurement of the pi- p ---> 3 pi0 n total cross section from threshold to 0.75 GeV/c

Starostin, A. ; Nefkens, B.M.K. ; Manley, D.M. ; et al.
Phys.Rev.C 67 (2003) 068201, 2003.
Inspire Record 620818 DOI 10.17182/hepdata.25279

We report a new measurement of the π−p→3π0n total cross section from threshold to pπ=0.75GeV/c. The cross section near the N(1535)12− resonance is only a few μb after subtracting the large η→3π0 background associated with π−p→ηn. A simple analysis of our data results in the estimated branching fraction B[S11→πN(1440)12+]=(8±2)%. This is the first such estimate obtained with a three-pion production reaction.

1 data table

Total cross section from threshold to 750 MeV. Only statistical errors are given in the table.


Single Diffraction Dissociation in $\pi^+ p$ and $K^+ p$ Interactions at 250-{GeV}/$c$

The EHS/NA22 collaboration Adamus, M. ; Azhinenko, I.V. ; Almeida, F.M.L., Jr. ; et al.
Z.Phys.C 39 (1988) 301, 1988.
Inspire Record 254506 DOI 10.17182/hepdata.15646

None

1 data table

No description provided.