Transmission regeneration of neutral kaons in hydrogen

Birulev, V.K. ; Genchev, V.I. ; Govorun, N.N. ; et al.
Sov.J.Nucl.Phys. 24 (1976) 390-396, 1976.
Inspire Record 1392573 DOI 10.17182/hepdata.19051

None

1 data table

No description provided.


Real part of spinless p p-scattering amplitude at zero angle in the energy region from 0.135 to 1.700 gev/c

Amirkhanov, I.V. ; Bystritskii, V.M. ; Vertogradov, L.S. ; et al.
Yad.Fiz. 17 (1973) 1222-1224, 1973.
Inspire Record 85077 DOI 10.17182/hepdata.19177

None

1 data table

FORWARD AMPLITUDE DEDUCED FROM D(SIG)/DOMEGA IN COULOMB-NUCLEAR INTERFERENCE REGION.


K0(L) K0(S) TRANSMISSION REGENERATION ON DEUTERONS AND NEUTRONS IN A MOMENTUM RANGE OF 10-GEV/C - 50-GEV/C

The BERLIN-BUDAPEST-DUBNA-PRAGUE-SERPUKHOV-SOFIYA-TBILISI collaboration Albrecht, K.-F. ; Birulev, V.K. ; Genchev, V. ; et al.
Nucl.Phys.B 158 (1979) 29-38, 1979.
Inspire Record 145094 DOI 10.17182/hepdata.34627

The energy dependence of the K L 0 -K S 0 transmission regeneration amplitudes on deuterons and neutrons in the momentum region 10–50 GeV/ c is determined. The moduli of the modified transmission amplitudes are momentum dependent. These dependences are fitted by the expression A j p − nj , where A j and n j ( j = d, n) are constants: A d =2.88 ±0.04 mb , n d =0.546±0.030, for deuterons , A n =1.97 ±0.14 mb , n n =0.530±0.019, for neutrons , The amplitude phases do not depend on the kaon momentum and are equal to ϕ d = (−130.9 ± 2.7)° ϕ n = (−132.3 ± 1.7)°. The mean value of the ratio of the total cross-section differences for K 0 and K 0 interactions with neutrons and protons is determined. The residues of the partial ω and ϱ amplitudes, which contribute to the kaon-nucleon interaction amplitudes, are also obtained.

2 data tables

FORWARD CROSS SECTION, AMPLITUDE AND PHASE FOR K0 REGENERATION.

(AK0 - K0) TOTAL CROSS SECTION DIFFERENCES.


Neutral Kaon Regeneration on Carbon in a Momentum Region of 16-GeV/c-40-GeV/c

The BERLIN-BUDAPEST-DUBNA-PRAGUE-SERPUKHOV-SOFIA collaboration Albrecht, K.-F. ; Birulev, V.K. ; Deak, F. ; et al.
Nucl.Phys.B 93 (1975) 237-241, 1975.
Inspire Record 103340 DOI 10.17182/hepdata.32006

The modulus and the phase of the K L o −K S o regeneration amplitude on carbon have been measured. In a momentum range of 16–40 GeV/ c the phase is constant within experimental error bars and coincides with the regeneration phase on hydrogen. Both the modulus and the phase of the regeneration amplitude on carbon are in agreement with optical model predictions.

1 data table

ASSUMING A CONSTANT PHASE INDEPENDENT OF MOMENTUM, THE CARBON REGENERATION AMPLITUDE HAS A PHASE OF -130 +- 17 DEG.


Neutral Kaon Transmission Regeneration on Deuterons and Neutrons in Kaon Momentum Region of 10-GeV/c to 50-GeV/c

The Berlin-Budapest-Dubna-Prague-Serpukhov-Sofiya-Tbilisi collaboration Albrecht, K.F. ; Birulev, V.K. ; Vesztergombi, G. ; et al.
Sov.J.Nucl.Phys. 27 (1978) 199, 1978.
Inspire Record 122158 DOI 10.17182/hepdata.19037

None

4 data tables

THE AVERAGE PHASE IS -130.9 +- 2.7 DEG (NO EXPLICIT MOMENTUM DEPENDENCE). USING ABS(ETA+-) = 2.3*10**-3.

REGENERATION AMPLITUDE ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.

CROSS SECTION DIFFERENCES ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.

More…

K0(L) K0(s) Transmission Regeneration on Hydrogen

The Budapest-Dubna-Prague-Serpukhov collaboration Birulev, V.K. ; Genchev, V. ; Govorun, N.N. ; et al.
Nucl.Phys.B 115 (1976) 249-268, 1976.
Inspire Record 3964 DOI 10.17182/hepdata.35585

The energy dependence of the modulus and phase of the K L 0 -K S 0 regeneration amplitude on hydrogen in the range of 14–50 GeV has been investigated at the Serpukhov 70 GeV accelerator. It has been established that the modulus of the modified regeneration amplitude decreases with increasing momentum as 2|ƒ 21 0 (p)|/k = (0.84 ± 0.42) · p −0.50±0.15 mb . The amplitude phase is energy-independent and its mean value is ϕ 21 0 = −132° ± 5°. The results obtained are compared with other experiments and with predictions of different theoretical models.

1 data table

TABLE ALSO CALCULATES FORWARD DIFFERENTIAL CROSS SECTION AND SIG(AK0 P) - SIG(K0 P) TOTAL CROSS SECTION DIFFERENCES.