Updated measurements of exclusive $J/\psi$ and $\psi(2S)$ production cross-sections in $pp$ collisions at $\sqrt{s}=7$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
J.Phys.G 41 (2014) 055002, 2014.
Inspire Record 1277076 DOI 10.17182/hepdata.66883

The differential cross-section as a function of rapidity has been measured for the exclusive production of $J/\psi$ and $\psi(2S)$ mesons in proton-proton collisions at $\sqrt{s}=7$ TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb$^{-1}$. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be $$\begin{array}{rl} \sigma_{pp\rightarrow J/\psi\rightarrow{\mu^+}{\mu^-}}(2.0<\eta_{\mu^\pm }<4.5)=&291\pm 7\pm19 {\rm \ pb},\\ \sigma_{pp\rightarrow\psi(2S)\rightarrow{\mu^+}{\mu^-}}(2.0<\eta_{\mu^\pm}<4.5)=&6.5\pm 0.9\pm 0.4 {\rm \ pb},\end{array}$$ where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects.

2 data tables

Cross section times branching ratio to two muons with pseudorapidities between 2.0 and 4.5.

Cross-section measurements for $J/\psi$ and $\psi(2s)$ decaying into two muons (pb) as a function of rapidity. The tabulated errors are the uncorrelated statistical uncertainties.


Measurement of the inelastic $pp$ cross-section at a centre-of-mass energy of $\sqrt{s}=7$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 02 (2015) 129, 2015.
Inspire Record 1333223 DOI 10.17182/hepdata.69845

The cross-section for inelastic proton-proton collisions, with at least one prompt long-lived charged particle of transverse momentum $p_{\rm T}>0.2$ GeV/$c$ in the pseudorapidity range $2.0<\eta<4.5$, is measured by the LHCb experiment at a centre-of-mass energy of $\sqrt{s}=7$ TeV. The cross-section in this kinematic range is determined to be $\sigma_{\rm inel}^{\rm acc} = 55.0 \pm 2.4$ mb within the spectrometer acceptance with an experimental uncertainty that is dominated by systematic contributions. Extrapolation to the full phase space, using PYTHIA 6, yields $\sigma_{\rm inel} = 66.9 \pm 2.9 \pm 4.4$ mb, where the first uncertainty is experimental and the second is due to the extrapolation.

2 data tables

The cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV, yielding one or more prompt long-lived charged particles in the kinematic range $p_T > 0.2$ GeV/$c$ and $2.0 < \eta < 4.5$ (LHCb acceptance). The quoted uncertainty that is almost completely systematic in nature as the purely statistical uncertainty is two orders of magnitude smaller.

The total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV, extrapolated using PYTHIA6 and different soft QCD tunes provided by PYTHIA 8.201 to estimate its uncertainty.


Measurement of $B_c^+$ production in proton-proton collisions at $\sqrt{s}=8$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Phys.Rev.Lett. 114 (2015) 132001, 2015.
Inspire Record 1327230 DOI 10.17182/hepdata.22229

Production of $B_c^+$ mesons in proton-proton collisions at a center-of-mass energy of 8 TeV is studied with data corresponding to an integrated luminosity of $2.0~{\rm fb}^{-1}$ recorded by the LHCb experiment. The ratio of production cross-sections times branching fractions between the $B_c^+\to J/\psi \pi^+$ and $B^+\to J/\psi K^+$ decays is measured as a function of transverse momentum and rapidity in the regions $0 < p_{\rm T} < 20~{\rm GeV}/c$ and $2.0 < y < 4.5$. The ratio in this kinematic range is measured to be $(0.683\pm0.018\pm0.009)\%$, where the first uncertainty is statistical and the second systematic.

3 data tables

Double differential production ratio $R(p_T, y)$ in bins of $p_T$ and $y$.

Differential production ratio $R(p_T)$ in bins of $p_T$ and integrated over $2.0 < y <4.5$ range.

Differential production ratio $R(y)$ in bins of $y$ and integrated over $0 < p_T < 20$ $GeV/c$ range.


Measurement of Upsilon production in pp collisions at sqrt{s}=2.76 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Eur.Phys.J.C 74 (2014) 2835, 2014.
Inspire Record 1280929 DOI 10.17182/hepdata.63971

The production of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of 3.3 pb^{-1} collected in proton-proton collisions at a centre-of-mass energy of sqrt{s}=2.76 TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the Upsilon transverse momentum and rapidity, over the ranges p_T<15 GeV/c and 2.0<y<4.5. The total cross-sections in this kinematic region, assuming unpolarised production, are measured to be sigma(pp -> Upsilon(1S) X) x B(Upsilon(1S) -> mu+mu-) = 1.111 +/- 0.043 +/- 0.044 nb, sigma(pp -> Upsilon(2S) X) x B(Upsilon(2S) -> mu+mu-) = 0.264 +/- 0.023 +/- 0.011 nb, sigma(pp -> Upsilon(3S) X) x B(Upsilon(3S) -> mu+mu-) = 0.159 +/- 0.020 +/- 0.007 nb, where the first uncertainty is statistical and the second systematic.

10 data tables

Integrated cross-sections times dimuon branching fractions in the PT range < 15 GeV and rapidity in the range 2.0-4.5. The first uncertainty is statistical and the second systematic.

Integrated cross-sections times dimuon branching fractions in the PT range < 15 GeV and rapidity in the range 2.5-4.0. The first uncertainty is statistical and the second systematic.

Single differential cross-section for UPSI(1S) times the dimuon branching fraction as a function of PT for the rapidity region 2.0-4.5 without normalisation to the bin sizes. The first uncertainty is statistical and the second systematic.

More…

Measurement of $\psi(2S)$ polarisation in $pp$ collisions at $\sqrt{s}=7$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Eur.Phys.J.C 74 (2014) 2872, 2014.
Inspire Record 1283844 DOI 10.17182/hepdata.64674

The polarisation of prompt $\psi(2S)$ mesons is measured by performing an angular analysis of $\psi(2S)\rightarrow \mu^{+} \mu^{-}$ decays using proton-proton collision data, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by the LHCb detector at a centre-of-mass energy of 7 TeV. The polarisation is measured in bins of transverse momentum $p_\mathrm{T}$ and rapidity $y$ in the kinematic region $3.5<p_\mathrm{T}<15$ GeV$/c$ and $2.0<y<4.5$, and is compared to theoretical models. No significant polarisation is observed.

8 data tables

The measured prompt PSI(2S) polarisation parameter LAMBDA(THETA) in bins of YRAP and PT in the helicity frame.

The measured prompt PSI(2S) polarisation parameter LAMBDA(THETA PHI) in bins of YRAP and PT in the helicity frame.

The measured prompt PSI(2S) polarisation parameter LAMBDA(PHI) in bins of YRAP and PT in the helicity frame.

More…

Measurement of charged particle multiplicities and densities in $pp$ collisions at $\sqrt{s}=7\;$TeV in the forward region

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Eur.Phys.J.C 74 (2014) 2888, 2014.
Inspire Record 1281685 DOI 10.17182/hepdata.63498

Charged particle multiplicities are studied in proton-proton collisions in the forward region at a centre-of-mass energy of $\sqrt{s} = 7\;$TeV with data collected by the LHCb detector. The forward spectrometer allows access to a kinematic range of $2.0<\eta<4.8$ in pseudorapidity, momenta down to $2\;$GeV/$c$ and transverse momenta down to $0.2\;$GeV/$c$. The measurements are performed using minimum-bias events with at least one charged particle in the kinematic acceptance. The results are presented as functions of pseudorapidity and transverse momentum and are compared to predictions from several Monte Carlo event generators.

5 data tables

Charged particle density as function of pseudorapidity for events with at least one prompt final state charged particle in fiducial range. The first quoted uncertainty is statistical and the second systematic.

Charged particle density as function of transverse momentum for events with at least one prompt final state charged particle in fiducial range. The first quoted uncertainty is statistical and the second systematic.

Observed charged particle multiplicity distribution in the full kinematic range of the analysis. The first quoted uncertainty is statistical and the second systematic.

More…

Observation of associated production of a $Z$ boson with a $D$ meson in the~forward region

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 04 (2014) 091, 2014.
Inspire Record 1277075 DOI 10.17182/hepdata.61396

A search for associated production of a $Z$ boson with an open charm meson is presented using a data sample, corresponding to an integrated luminosity of $1.0\,\mathrm{fb}^{-`}$ of proton--proton collisions at a centre-of-mass energy of 7\,TeV, collected by the LHCb experiment. %% Seven candidate events for associated production of a $Z$ boson with a $D^0$ meson and four candidate events for a $Z$ boson with a $D^+$ meson are observed with a combined significance of 5.1standard deviations. The production cross-sections in the forward region are measured to be $$\sigma_{Z\rightarrow\mu^+\mu^-\!,D^0} = 2.50\pm1.12\pm0.22pb$$ $$\sigma_{Z\rightarrow\mu^+\mu^-\!,D^+} = 0.44\pm0.23\pm0.03pb,$$ where the first uncertainty is statistical and the second systematic.

1 data table

Cross-sections in the fiducial region for associated production of a Z boson and a D meson.


Study of $\Upsilon$ production and cold nuclear matter effects in pPb collisions at $\sqrt{s_{NN}}=5~\mathrm{TeV}$

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 07 (2014) 094, 2014.
Inspire Record 1297230 DOI 10.17182/hepdata.64175

Production of $\Upsilon$ mesons in proton-lead collisions at a nucleon-nucleon centre-of-mass energy $\sqrt{s_{NN}}=5 \mathrm{TeV}$ is studied with the LHCb detector. The analysis is based on a data sample corresponding to an integrated luminosity of $1.6 \mathrm{nb}^{-1}$. The $\Upsilon$ mesons of transverse momenta up to $15 \mathrm{GeV}/c$ are reconstructed in the dimuon decay mode. The rapidity coverage in the centre-of-mass system is $1.5 < y < 4.0$ (forward region) and $-5.0 < y < -2.5$ (backward region). The forward-backward production ratio and the nuclear modification factor for $\Upsilon(1S)$ mesons are determined. The data are compatible with the predictions for a suppression of $\Upsilon(1S)$ production with respect to proton-proton collisions in the forward region, and an enhancement in the backward region. The suppression is found to be smaller than in the case of prompt $J/\psi$ mesons.

5 data tables

The product of production cross-section and branching fraction for upsilon mesons in the backward and forward regions.

The product of production cross-section and branching fraction for UPSILON(1S) in the common rapidity range.

The production ratios of excited upsilon mesons in the backward and forward regions.

More…

Measurement of the exclusive $\Upsilon$ production cross-section in $pp$ collisions at $\sqrt{s}=$7 TeV and 8 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 09 (2015) 084, 2015.
Inspire Record 1373746 DOI 10.17182/hepdata.72986

A study is presented of central exclusive production of $\Upsilon(nS)$ states, where the $\Upsilon(nS)$ resonances decay to the $\mu^+\mu^-$ final state, using $pp$ collision data recorded by the LHCb experiment. The cross-section is measured in the rapidity range $2<y(\Upsilon)<4.5$ where the muons are reconstructed in the pseudorapidity range $2<\eta(\mu^\pm)<4.5$. The data sample corresponds to an integrated luminosity of 2.9 fb$^{-1}$ and was collected at centre-of-mass energies of $7$ TeV and $8$ TeV. The measured $\Upsilon(1S)$ and $\Upsilon(2S)$ production cross-sections are \begin{eqnarray} \sigma(pp \to p\Upsilon(1S)p) &=& 9.0 \pm 2.1 \pm 1.7\textrm{ pb and}\nonumber\\ \sigma(pp \to p\Upsilon(2S)p) &=& 1.3 \pm 0.8 \pm 0.3\textrm{ pb},\nonumber \end{eqnarray} where the first uncertainties are statistical and the second are systematic. The $\Upsilon(1S)$ cross-section is also measured as a function of rapidity and is found to be in good agreement with Standard Model predictions. An upper limit is set at 3.4 pb at the 95\% confidence level for the exclusive $\Upsilon(3S)$ production cross-section, including possible contamination from $\chi_b(3P)\to\Upsilon(3S)\gamma$ decays.

2 data tables

Production cross-section for the $\Upsilon(1S)$ resonance in ranges of $\Upsilon(1S)$ rapidity, where the muons are required to lie in the pseudorapidity range $2 < \eta(\mu^{\pm}) < 4.5$. The first uncertainties are statistical and the second ones are systematic.

Differential production cross-section for $\Upsilon(1S)$, where the data have been corrected for the effect of the LHCb geometrical acceptance. The statistical and systematic uncertainties are combined in quadrature.


Measurement of the $\chi_b(3P)$ mass and of the relative rate of $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ production

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 10 (2014) 088, 2014.
Inspire Record 1315113 DOI 10.17182/hepdata.73004

The production of $\chi_b$ mesons in proton-proton collisions is studied using a data sample collected by the LHCb detector, at centre-of-mass energies of $\sqrt{s}=7$ and $8$ TeV and corresponding to an integrated luminosity of 3.0 fb$^{-1}$. The $\chi_b$ mesons are identified through their decays to $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ using photons that converted to $e^+e^-$ pairs in the detector. The relative prompt production rate of $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ mesons is measured as a function of the $\Upsilon(1S)$ transverse momentum in the $\chi_b$ rapidity range $2.0<y<4.5$. A precise measurement of the $\chi_b(3P)$ mass is also performed. Assuming a mass splitting between the $\chi_{b1}(3P)$ and the $\chi_{b2}(3P)$ states of 10.5 MeV/$c^2$, the measured mass of the $\chi_{b1}(3P)$ meson is $ m(\chi_{b1}(3P))= 10515.7^{+2.2}_{-3.9}(stat) ^{+1.5}_{-2.1}(syst) MeV/c^2.$

1 data table

Relative production cross section of $\chi_{b2}(1P)$ to $\chi_{b1}(1P)$ mesons in $p_T$ bins of $\Upsilon(1S)$ meson. The first uncertainty is statistical, the second is systematic and the third is due to the uncertainty on the branching fractions.