Underlying-event properties in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 023, 2023.
Inspire Record 2071174 DOI 10.17182/hepdata.133032

We report about the properties of the underlying event measured with ALICE at the LHC in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The event activity, quantified by charged-particle number and summed-$p_{\rm T}$ densities, is measured as a function of the leading-particle transverse momentum ($p_{\rm T}^{\rm trig}$). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different $p_{\rm T}$ thresholds (0.15, 0.5, and 1 GeV/$c$) at mid-pseudorapidity ($|\eta|<0.8$). The event activity in the transverse region, which is the most sensitive to the underlying event, exhibits similar behaviour in both pp and p$-$Pb collisions, namely, a steep increase with $p_{\rm T}^{\rm trig}$ for low $p_{\rm T}^{\rm trig}$, followed by a saturation at $p_{\rm T}^{\rm trig} \approx 5$ GeV/$c$. The results from pp collisions are compared with existing measurements at other centre-of-mass energies. The quantities in the toward and away regions are also analyzed after the subtraction of the contribution measured in the transverse region. The remaining jet-like particle densities are consistent in pp and p$-$Pb collisions for $p_{\rm T}^{\rm trig}>10$ GeV/$c$, whereas for lower $p_{\rm T}^{\rm trig}$ values the event activity is slightly higher in p$-$Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators.

10 data tables

Fig. 4: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 5: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 6a: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Away and Toward regions after the subtraction of Number density $N_{\rm ch}$ and $\Sigma p_{\rm T}$ distributions in the transverse region for pp collisions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

More…

The Multiplicity dependence of inclusive p(t) spectra from p-p collisions at s**(1/2) = 200-GeV

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 74 (2006) 032006, 2006.
Inspire Record 719969 DOI 10.17182/hepdata.102084

We report measurements of transverse momentum $p_t$ spectra for ten event multiplicity classes of p-p collisions at $\sqrt{s} = 200$ GeV. By analyzing the multiplicity dependence we find that the spectrum shape can be decomposed into a part with amplitude proportional to multiplicity and described by a L\'evy distribution on transverse mass $m_t$, and a part with amplitude proportional to multiplicity squared and described by a gaussian distribution on transverse rapidity $y_t$. The functional forms of the two parts are nearly independent of event multiplicity. The two parts can be identified with the soft and hard components of a two-component model of p-p collisions. This analysis then provides the first isolation of the hard component of the $p_t$ spectrum as a distribution of simple form on $y_t$.

5 data tables

FIG. 1: Corrected and normalized charged-particle spectra on transverse momentum $p_t$ (left) and transverse rapidity $y_t$ (right) for 10 event multiplicity classes, displaced upward by successive factors 40 relative to $\hat{n}_{ch}$ = 1 at bottom. Solid curves represent reference function $n_s/n_{ch} · S_0(y_t)$ (cf.Sec. IV C). Dotted curves are spline fits to guide the eye.

FIG. 1: Corrected and normalized charged-particle spectra on transverse momentum $p_t$ (left) and transverse rapidity $y_t$ (right) for 10 event multiplicity classes, displaced upward by successive factors 40 relative to $\hat{n}_{ch}$ = 1 at bottom. Solid curves represent reference function $n_s/n_{ch} · S_0(y_t)$ (cf.Sec. IV C). Dotted curves are spline fits to guide the eye.

FIG. 2. Left: Relative residuals from power-law fits to $p_{t}$ spectra in Fig. 1. The hatched band represents the expected statistical errors for STAR data. Right: Exponents $n$ from power-law fits to data (solid points) and to corresponding twocomponent fixed-model functions (open circles, see Sec. VI) compared to the two-component fixed-model Lévy exponent $12.8 \pm 0.15$ (hatched band). NOTE 1: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty. NOTE 2: The "data_stat" uncertainty corresponds to the expected statistical error (hatched band).

More…

Version 2
Global polarization measurement in Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 76 (2007) 024915, 2007.
Inspire Record 750410 DOI 10.17182/hepdata.98581

The system created in non-central relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Due to spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Lambda and anti-Lambda hyperon global polarization measurements in Au+Au collisions at sqrt{s_NN}=62.4 GeV and 200 GeV performed with the STAR detector at RHIC. The observed global polarization of Lambda and anti-Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |P_{Lambda,anti-Lambda}| <= 0.02, is compared to the theoretical values discussed recently in the literature.

11 data tables

(Color online) Invariant mass distribution for the $\Lambda$ (filled circles) and $\overline{\Lambda}$ (open squares) candidates after the quality cuts for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%).

(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ transverse momentum $p^{\Lambda}_{t}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%) and open squares indicate the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). Only statistical uncertainties are shown.

(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ pseudorapidity $\eta^{\Lambda}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%). A constant line fit to these data points yields $P_{\Lambda}=(2.8\pm 9.6)\times 10^{-3}$ with $\chi^{2}/ndf=6.5/10$. Open squares show the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). A constant line fit gives $P_{\Lambda}=(1.9\pm 8.0)\times 10^{-3}$ with $\chi^{2}/ndf=14.3/10$. Only statistical uncertainties are shown.

More…

Scaling Properties of Hyperon Production in Au+Au Collisions at sqrt(s_NN) = 200 GeV

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 98 (2007) 062301, 2007.
Inspire Record 718755 DOI 10.17182/hepdata.98928

We present the scaling properties of Lambda, Xi, Omega and their anti-particles produced at mid-rapidity in Au+Au collisions at RHIC at sqrt(s_NN) = 200 GeV. The yield of multi-strange baryons per participant nucleon increases from peripheral to central collisions more rapidly than the Lambda yield, which appears to correspond to an increasing strange quark density of matter produced. The value of the strange phase space occupancy factor gamma_s, obtained from a thermal model fit to the data, approaches unity for the most central collisions. We also show that the nuclear modification factors, R_CP, of Lambda and Xi are consistent with each other and with that of protons in the transverse momentum range 2.0 < p_T < 5.0 GeV/c. This scaling behaviour is consistent with a scenario of hadron formation from constituent quark degrees of freedom through quark recombination or coalescence.

6 data tables

Transverse momentum distributions of (a) $\Lambda(\overline{\Lambda})$ for $|y|<1.0$, (b) $\Xi^{-}(\overline{\Xi}^{+})$ for $|y|<0.75$ and (c) $\Omega^{-}+\overline{\Omega}^{+}$ for $|y|<0.75$ in Au+Au collisions at $\sqrt{s_{NN}}$ as a function of centrality. The $\Lambda$ spectra were corrected for weak decay of $\Xi$, $\Xi^{0}$ and $\Omega$. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the $\Lambda$, $\Xi^{-}$ and $\Omega^{-}+\overline{\Omega}^{+}$ data, the fits to the $\overline{\Lambda}$ and $\overline{\Xi}^{+}$ are omitted for clarity.

Transverse momentum distributions of (a) $\Lambda(\overline{\Lambda})$ for $|y|<1.0$, (b) $\Xi^{-}(\overline{\Xi}^{+})$ for $|y|<0.75$ and (c) $\Omega^{-}+\overline{\Omega}^{+}$ for $|y|<0.75$ in Au+Au collisions at $\sqrt{s_{NN}}$ as a function of centrality. The $\Lambda$ spectra were corrected for weak decay of $\Xi$, $\Xi^{0}$ and $\Omega$. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the $\Lambda$, $\Xi^{-}$ and $\Omega^{-}+\overline{\Omega}^{+}$ data, the fits to the $\overline{\Lambda}$ and $\overline{\Xi}^{+}$ are omitted for clarity.

Transverse momentum distributions of (a) $\Lambda(\overline{\Lambda})$ for $|y|<1.0$, (b) $\Xi^{-}(\overline{\Xi}^{+})$ for $|y|<0.75$ and (c) $\Omega^{-}+\overline{\Omega}^{+}$ for $|y|<0.75$ in Au+Au collisions at $\sqrt{s_{NN}}$ as a function of centrality. The $\Lambda$ spectra were corrected for weak decay of $\Xi$, $\Xi^{0}$ and $\Omega$. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the $\Lambda$, $\Xi^{-}$ and $\Omega^{-}+\overline{\Omega}^{+}$ data, the fits to the $\overline{\Lambda}$ and $\overline{\Xi}^{+}$ are omitted for clarity.

More…

Production of e+ e- pairs accompanied by nuclear dissociation in ultra-peripheral heavy ion collision.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 70 (2004) 031902, 2004.
Inspire Record 647869 DOI 10.17182/hepdata.98580

We present the first data on $e^+e^-$ pair production accompanied by nuclear breakup in ultra-peripheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects events at small impact parameters, where higher-order corrections to the pair production cross section should be enhanced. We compare the pair kinematic distributions with two calculations: one based on the equivalent photon approximation, and the other using lowest-order quantum electrodynamics (QED): the latter includes the photon virtuality. The cross section, pair mass, rapidity and angular distributions are in good agreement with both calculations. The pair transverse momentum, $p_T$, spectrum agrees with the QED calculation, but not with the equivalent photon approach. We set limits on higher-order contributions to the cross section. The $e^+$ and $e^-$ $p_T$ spectra are similar, with no evidence for interference effects due to higher-order diagrams.

5 data tables

(a) The pair mass distribution, (b) pair $p){T}$ , (c) pair rapidity and (d) pair cos($\theta′$) distributions. The data (points) are compared with predictions from the EPA (solid histogram) and lowest-order QED (dashed histogram) calculations. The error bars include both statistical and systematic errors.

(a) The pair mass distribution, (b) pair $p){T}$ , (c) pair rapidity and (d) pair cos($\theta′$) distributions. The data (points) are compared with predictions from the EPA (solid histogram) and lowest-order QED (dashed histogram) calculations. The error bars include both statistical and systematic errors.

(a) The pair mass distribution, (b) pair $p){T}$ , (c) pair rapidity and (d) pair cos($\theta′$) distributions. The data (points) are compared with predictions from the EPA (solid histogram) and lowest-order QED (dashed histogram) calculations. The error bars include both statistical and systematic errors.

More…

Azimuthal anisotropy and correlations in the hard scattering regime at RHIC.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 90 (2003) 032301, 2003.
Inspire Record 588226 DOI 10.17182/hepdata.98579

Azimuthal anisotropy ($v_2$) and two-particle angular correlations of high $p_T$ charged hadrons have been measured in Au+Au collisions at $\sqrt{s_{NN}}$=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high $p_T$ partons. The monotonic rise of $v_2(p_T)$ for $p_T<2$ GeV/c is consistent with collective hydrodynamical flow calculations. At $\pT>3$ GeV/c a saturation of $v_2$ is observed which persists up to $p_T=6$ GeV/c.

4 data tables

$v_{2}$($p_{T}$) for different collision centralities. The errors are statistical only. The systematic uncertainties, which are highly correlated point-to-point, are $^{+5}_{-20}%$.

$v_{2}$($p_{T}$) for minimum-bias events (circles). The error bars represent the statistical errors and the caps show the systematic uncertainty. The data are compared with hydro+pQCD calculations [9] assuming the initial gluon density $dN^{g}/dy$ = 1000 (dashed line), 500 (dotted line), and 200 (dashed-dotted line). Also shown are pure hydrodynamical calculations [16] (solid line).

High $p_{T}$ azimuthal correlation functions for central events. Upper panel: Correlation function for $|\Delta\eta|$ < 0.5 (solid circles) and scaled correlation function for 0.5 < $|\Delta\eta|$ < 1.4 (open squares). Lower panel: Difference of the two correlation functions. Also shown are the fits to the data (described in the text).

More…

Study of the Reaction $\bar{p} p \to p X$ at 22.4-{GeV}/$c$

The Alma Ata-Dubna-Helsinki-Kosice-Moscow-Prague-Tbilisi collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Dashian, N.B. ; et al.
Sov.J.Nucl.Phys. 33 (1981) 64-66, 1981.
Inspire Record 154173 DOI 10.17182/hepdata.69635

None

49 data tables

No description provided.

No description provided.

No description provided.

More…

Inelastic Interaction of Protons and Nucleons at an Energy of 9 BeV

Visky, T. ; Gramenitskii, I.M. ; Korbel, Z. ; et al.
Sov.Phys.JETP 14 (1962) 763-767, 1962.
Inspire Record 1388049 DOI 10.17182/hepdata.17008

The multiplicity dependence of the angular and energy characteristics of secondary particles in proton-nucleon collisions at 9 Bevis studied. A comparison is made with results of calculations based on the single-meson scheme.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Multiplicity, Momentum and Angular Characteristics of $\pi^-$ Mesons for $p$ C, $d$ C, $\alpha$ C and C C Interactions at 4.2-{GeV}/$c$ Per Nucleon

The Alma Ata-Baku-Belgrade-Bucharest-Dubna-Kishinev-Leipzig- Moscow-Prague-Samarkand-Sofiya-Tashkent-Tbilisi-Ulan Bator-Varna collaboration Agakishiev, G.N. ; Akhababian, N. ; Armutliisky, D. ; et al.
Z.Phys.C 27 (1985) 177, 1984.
Inspire Record 203342 DOI 10.17182/hepdata.1999

Light ion collisions with carbon target at 4.2 GeV/c/N are studied. Pion multiplicity distributions, momentum and angular spectra are analysed. These data are described in terms of models assuming independent interactions of nucleons from the projectile nucleus with the target.

18 data tables

No description provided.

No description provided.

No description provided.

More…

THE STUDY OF anti-n n INTERACTIONS AT 6.1-GeV/c

The Dubna-Bucharest-Yerevan-Kosice-Moscow-Prague-Sofiya collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Bruncko, D. ; et al.
Sov.J.Nucl.Phys. 48 (1988) 475, 1988.
Inspire Record 253864 DOI 10.17182/hepdata.9420

None

21 data tables

No description provided.

No description provided.

No description provided.

More…