Azimuthally differential pion femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV

The ALICE collaboration Adamova, Dagmar ; Aggarwal, Madan Mohan ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.Lett. 118 (2017) 222301, 2017.
Inspire Record 1512303 DOI 10.17182/hepdata.77905

We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm NN}}=2.76$ TeV. The measurements have been performed in the centrality range 0-50% and for pion pair transverse momenta $0.2 < k_{\rm T} < 0.7$ GeV/$c$. We find that the $R_{\rm side}$ and $R_{\rm out}$ radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider (RHIC). The final-state source eccentricity, estimated via $R_{\rm side}$ oscillations, is found to be significantly smaller than the initial-state source eccentricity, but remains positive; indicating that even after a stronger expansion in the in-plane direction, the pion source at the freeze-out is still elongated in the out-of-plane direction. The 3+1D hydrodynamic calculations are in qualitative agreement with observed centrality and transverse momentum $R_{\rm side}$ oscillations, but systematically underestimate the oscillation magnitude.

56 data tables

The azimuthal dependence of $R_{out}^{2}$ as a function of $\Delta\varphi=\varphi_{\mathrm{pair}}-\Psi_{\mathrm EP,2}$ for the centrality 20--30% and different $k_{\mathrm{T}}$ ranges.

The azimuthal dependence of $R_{out}^{2}$ as a function of $\Delta\varphi=\varphi_{\mathrm{pair}}-\Psi_{\mathrm EP,2}$ for the centrality 20--30% and different $k_{\mathrm{T}}$ ranges.

The azimuthal dependence of $R_{out}^{2}$ as a function of $\Delta\varphi=\varphi_{\mathrm{pair}}-\Psi_{\mathrm EP,2}$ for the centrality 20--30% and different $k_{\mathrm{T}}$ ranges.

More…

System size and energy dependence of near-side di-hadron correlations

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014903, 2012.
Inspire Record 943192 DOI 10.17182/hepdata.77720

Two-particle azimuthal ($\Delta\phi$) and pseudorapidity ($\Delta\eta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both $\Delta\phi$ and $\Delta\eta$, and the ridge, narrow in $\Delta\phi$ but broad in $\Delta\eta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV, but is found to be substantially smaller at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV than at $\sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ \langle N_{\mathrm{part}}\rangle$). Measurements of the ridge are compared to models.

40 data tables

Parameterizations of the transverse momentum dependence of the reconstruction efficiency of charged particles in the TPC in various collision systems, energies and centrality bins for the track selection cuts used in this analysis.

The raw correlation in $\Delta\eta$ for di-hadron correlations for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-12% central \Au collisions for $|\Delta\phi|<$ 0.78 before and after the track merging correction is applied. The data have been reflected about $\Delta\eta$=0.

Sample correlations in $\Delta\eta$ ($|\Delta\phi|<$ 0.78) for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-80% Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-95% $d$+Au at $\sqrt{s_{NN}}$ = 200 GeV, 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV, 40-80% Au+Au at $\sqrt{s_{NN}}$ = 200 GeV, and 0-12% central Au+Au at $\sqrt{s_{NN}}$ = 200 GeV. The data are averaged between positive and negative $\Delta\eta$. 5% systematic uncertainty due to track reconstruction efficiency not listed below.

More…

Two Particle Correlations in Inclusive and Semiinclusive pi- p Reactions at 200-GeV/c

Biswas, N.N. ; Bishop, J.M. ; Cason, N.M. ; et al.
Phys.Rev.Lett. 35 (1975) 1059, 1975.
Inspire Record 2906 DOI 10.17182/hepdata.3351

Significant two-particle correlations of dynamical origin are observed in 200 GeV/c π−p inclusive interactions. This is demonstrated by comparison with kinematic correlations calculated from an independent-particle-emission model. Two distinct correlation types are observed: (a) unlike-particle correlations with correlation length ∼ 1.3 rapidity units independent of azimuthal separation, and (b) like-particle correlations with correlation length ∼ 0.4 rapidity units which are observed only for small azimuthal separations.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Inclusive and Semiinclusive Two Pion Correlations in p p Collisions at 69-GeV/c

The French-Soviet collaboration Derre, J. ; Jabiol, M.A. ; Otwinowski, S. ; et al.
Nuovo Cim.A 33 (1976) 721, 1976.
Inspire Record 99995 DOI 10.17182/hepdata.8917

Correlations between pions produced in pp collisions at 69 GeV/c are observed both for π−π+ and π−π−. Short-range correlations in rapidity are present fory1⋍y2 in both cases; an enhancement is seen aroundy1=y2=±1. Correlations between transverse variables are linked to those in rapidity for π−π− combinations, whereas the effect is essentially kinematical for π+π−.

44 data tables

No description provided.

No description provided.

No description provided.

More…