Precision measurements of the timelike electromagnetic form factors of pion, kaon, and proton.

The CLEO collaboration Pedlar, T.K. ; Cronin-Hennessy, D. ; Gao, K.Y. ; et al.
Phys.Rev.Lett. 95 (2005) 261803, 2005.
Inspire Record 693873 DOI 10.17182/hepdata.130708

Using 20.7 pb^-1 of e+e- annihilation data taken at sqrt{s} = 3.671 GeV with the CLEO-c detector, precision measurements of the electromagnetic form factors of the charged pion, charged kaon, and proton have been made for timelike momentum transfer of |Q^2| = 13.48 GeV^2 by the reaction e+e- to h+h-. The measurements are the first ever with identified pions and kaons of |Q^2| > 4 GeV^2, with the results F_pi(13.48 GeV^2) = 0.075+-0.008(stat)+-0.005(syst) and F_K(13.48 GeV^2) = 0.063+-0.004(stat)+-0.001(syst). The result for the proton, assuming G^p_E = G^p_M, is G^p_M(13.48 GeV^2) = 0.014+-0.002(stat)+-0.001(syst), which is in agreement with earlier results.

2 data tables

Born cross section of $e^+e^-\rightarrow h^+h^-$

Timelike form factor


Measurement of the eta and eta' transition form factors at q**2 = 112-GeV**2.

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Bona, M. ; et al.
Phys.Rev.D 74 (2006) 012002, 2006.
Inspire Record 716277 DOI 10.17182/hepdata.22085

We report a study of the processes e+e- -> eta gamma and e+e- -> etaprime gamma at a center-of-mass energy of 10.58 GeV, using a 232 fb^-1 data sample collected with the BABAR detector at the PEP-II collider at SLAC. We observe 20+6-5 eta gamma and 50+8-7 etaprime gamma events over small backgrounds, and measure the cross sections sigma(e+e- -> eta gamma) =4.5+1.2-1.1(stat)+-0.3(sys) fb and sigma(e+e- -> etaprime gamma)=5.4+-0.8(stat)+-0.3(sys) fb. The corresponding transition form factors at q^2 = 112 GeV^2 are q^2|F_eta(q^2)|=0.229+-0.030+-0.008 GeV, and q^2|F_etaprime(q^2)|=0.251+-0.019+-0.008 GeV, respectively.

3 data tables

Measured cross sections.

Undressed cross sections calculated by applying a 7.5 +- 0.2 PCT correction for vacuum polarization.

Transition form factors at Q**2 = 112 GeV**2.


Precise determination of the electromagnetic form-factor of the proton in the timelike region up to s = 4.2-GeV**2

Bardin, G. ; Burgun, G. ; Calabrese, R. ; et al.
Phys.Lett.B 257 (1991) 514-518, 1991.
Inspire Record 314621 DOI 10.17182/hepdata.48504

The s dependence of the proton form factor in the time-like region has been determined up to s =4.2 GeV 2 , assuming the validity of the | G e | = | G m | = | G | hypothesis. Data were taken in a dedicated experiment performed at the LEAR antiproton ring at CERN, increasing by one order of magnitude the available statistics on the proton form factor near threshold in the time-like region. Our result consist of cross section measurements of the p p → e + e − reaction for different beam momenta in the kinematical r 3.6⩽ s ⩽4.2 GeV 2 . The observed s dependence of the form factor close to threshold differs appreciably from the one suggested by previous experiments.

3 data tables

No description provided.

No description provided.

Results of one-parameter fit. |Ge|=|Gm| assumed.


Determination of the electric and magnetic form-factors of the proton in the timelike region

Bardin, G. ; Burgun, G. ; Calabrese, R. ; et al.
Nucl.Phys.B 411 (1994) 3-32, 1994.
Inspire Record 376134 DOI 10.17182/hepdata.32865

The s dependence of the electromagnetic proton form factors in the time-like region has been determined from the threshold ( s = 4 M p 2 ) up to s = 4.2 GeV 2 . Data were collected in a dedicated experiment performed at the LEAR antiproton ring at CERN, increasing by one order of magnitude the available statistics. Total and differential cross section of the p p → e − e + reaction have been measured. The electric and magnetic form factors are found to have comparable value. The observed form factor shows a clear steep s dependence close to the threshold.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Precision measurement of the neutron magnetic form-factor

Anklin, H. ; Fritschi, D. ; Jourdan, J. ; et al.
Phys.Lett.B 336 (1994) 313-318, 1994.
Inspire Record 384757 DOI 10.17182/hepdata.28730

We present a precise measurement of the neutron magnetic form factor G mn at low momentum transfer ( q = 1.69 fm −1 ). From a simultaneous measurement of D ( e , e ′ n ) and D ( e , e ′ p ) we obtain the ratio of neutron and proton cross sections. The neutron detection efficiency is obtained from a separate measurement using tagged neutrons produced by H ( n , p ) n scattering of a monochromatic neutron beam. In contrast to previous determinations of G mn , the present value is insensitive to the systematic uncertainties in the interpretation of the data in terms of G mn and represents a determination of G mn to ±1.7%.

5 data tables

Using kinematics I.

Using kinematics II.

Using kinematics I. SD is simple dipole model.

More…

Measurement of the electromagnetic form-factor of the proton in the timelike region

Antonelli, A. ; Baldini, R. ; Bertani, M. ; et al.
Phys.Lett.B 334 (1994) 431-434, 1994.
Inspire Record 377833 DOI 10.17182/hepdata.28572

The cross section for the process e + e − → p p has been measured in the s range 3.6–5.9 GeV 2 by the FENICE experiment at the e + e − Adone storage ring and the proton electromagnetic form factor has been extracted.

2 data tables

Cross section measurement.

Proton form-factor measurement.


Evidence for spin one resonance production in the reaction gamma gamma* ---> pi+ pi- pi0 pi0

The TPC/Two Gamma collaboration Bauer, Daniel A. ; Belcinski, R. ; Berg, R.C. ; et al.
Phys.Rev.D 48 (1993) 3976-3987, 1993.
Inspire Record 353748 DOI 10.17182/hepdata.22574

Using data from the TPC/Two-Gamma experiment at the SLAC e+e− storage ring PEP, a C=+1 resonance has been observed in the π+π−π0γ final state resulting from the fusion of one nearly real and one quite virtual photon. The actual decay channel is probably π+π−π0π0, where one final-state photon is not detected, and the mass of the fully reconstructed state would be approximately 1525 MeV. A four-pion decay mode in turn implies that the resonance has even isospin. The nonobservation of this R(1525) when both initial-state photons are nearly real suggests a spin-1 assignment. Since the large measured value of the product of the branching ratio into π+π−π0π0 and the γγ coupling makes it unlikely that this state is the mostly s¯s f1(1510), its interpretation may lie outside of conventional meson spectroscopy. There is a second, less-significant enhancement observed in the same reaction at a four-pion mass centered around 2020 MeV.

2 data tables

No description provided.

Coupling parameter times the effective form factor.


First measurement of the neutron electromagnetic form-factor in the timelike region

Antonelli, A. ; Baldini, R. ; Bertani, M. ; et al.
Phys.Lett.B 313 (1993) 283-287, 1993.
Inspire Record 359376 DOI 10.17182/hepdata.28867

The first measurement of the neutron form factor in the time-like region has been performed by the FENICE experiment at the ADONE e + e − storage ring. Results at q 2 = 4.0 and 4.4 (GeV/ c ) 2 , together with a new measurement of the proton form factor are presented here.

2 data tables

Neutron form factor and cross section.

Preliminary analysis of proton form factor and cross section.


Measurements of the electric and magnetic form-factors of the proton from Q**2 = 1.75-GeV/c**2 to 8.83-GeV/c**2

Bosted, Peter E. ; Clogher, L. ; Lung, A. ; et al.
Phys.Rev.Lett. 68 (1992) 3841-3844, 1992.
Inspire Record 332962 DOI 10.17182/hepdata.19849

The proton elastic electric and magnetic form factors, GEp(Q2) and GMp(Q2), have been separately measured in the range Q2=1.75 to 8.83 (GeV/c)2, more than doubling the Q2 range of previous data. Scaled by the dipole fit, GD(Q2), the results for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.91, while GEp(Q2)/GD(Q2) is consistent with unity. Comparisons are made to QCD sum rule, diquark, constitutent quark, and vector meson dominance models, none of which agree with all of the new data. The ratio Q2F2/F1 approaches a constant value for Q2>3 (GeV/c)2.

2 data tables

Magnetic form factors.

Electric form factors.


Measurements of the electric and magnetic form-factors of the neutron from Q**2 = 1.75-GeV/c**2 to 4-GeV/c**2

Lung, A. ; Stuart, L.M. ; Bosted, Peter E. ; et al.
Phys.Rev.Lett. 70 (1993) 718-721, 1993.
Inspire Record 342252 DOI 10.17182/hepdata.19739

Quasielastic e-d cross sections have been measured at forward and backward angles. Rosenbluth separations were done to obtain RL and RT at Q2=1.75, 2.50, 3.25, and 4.00 (GeV/c)2. The neutron form factors GEn and GMn have been extracted using a nonrelativistic model. The sensitivity to deuteron wave function, relativistic corrections, and models of the inelastic background are reported. The results for GMn are consistent with the dipole form, while GEn is consistent with zero. Comparisons are made to theoretical models based on vector meson dominance, perturbative QCD, and QCD sum rules, as well as constituent quarks.

2 data tables

Magnetic form factors.

Electric form factors.