Di-jet production in gamma-gamma collisions at LEP2

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 58 (2008) 531-541, 2008.
Inspire Record 806241 DOI 10.17182/hepdata.51688

The production of two high-p_T jets in the interactions of quasi-real photons in e+e- collisions at sqrt{s_ee} from 189 GeV to 209 GeV is studied with data corresponding to an integrated e+e- luminosity of 550 pb^{-1}. The jets reconstructed by the k_T cluster algorithm are defined within the pseudo-rapidity range -1 < eta < 1 and with jet transverse momentum, p_T, above 3 GeV/c. The differential di-jet cross-section is measured as a function of the mean transverse momentum ptmean of the jets and is compared to perturbative QCD calculations.

11 data tables

Total cross section for dijet production. Errors are combined statistics and systematics.

Measured dijet production cross section as a function of the mean jet transverse momentum. Errors include both statistics and systematics.

Measured dijet production cross section as a function of jet pseudorapiditydifference. Errors include both statistics and systematics.

More…

Angular correlations in three-jet events in ep collisions at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Rev.D 85 (2012) 052008, 2012.
Inspire Record 793931 DOI 10.17182/hepdata.45283

Three-jet production in deep inelastic ep scattering and photoproduction was investigated with the ZEUS detector at HERA using an integrated luminosity of 127 pb-1. Measurements of differential cross sections are presented as functions of angular correlations between the three jets in the final state and the proton-beam direction. These correlations provide a stringent test of perturbative QCD and show sensitivity to the contributions from different colour configurations. Fixed-order perturbative QCD calculations assuming the values of the colour factors C_F, C_A and T_F as derived from a variety of gauge groups were compared to the measurements to study the underlying gauge group symmetry. The measured angular correlations in the deep inelastic ep scattering and photoproduction regimes are consistent with the admixture of colour configurations as predicted by SU(3) and disfavour other symmetry groups, such as SU(N) in the limit of large N.

9 data tables

Integrated 3-jet photoproduction cross section.

Integrated 3-jet cross sections in NC DIS.

Normalized differential 3-jet photoproduction cross section as a function of THETA(H).

More…

The Q**2 dependence of dijet cross sections in gamma p interactions at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 479 (2000) 37-52, 2000.
Inspire Record 523610 DOI 10.17182/hepdata.46968

The dependence of the photon structure on the photon virtuality, Q^2, is studied by measuring the reaction e^+p\to e^+ + {\rm jet} + {\rm jet} + {\rm X} at photon-proton centre-of-mass energies 134 < W < 223 GeV. Events have been selected in the Q^2 ranges \approx 0 GeV^2, 0.1-0.55 GeV^2, and 1.5-4.5 GeV^2, having two jets with transverse energy E_T^{jet} > 5.5 GeV in the final state. The dijet cross section has been measured as a function of the fractional momentum of the photon participating in the hard process, x_gamma. The ratio of the dijet cross section with x_gamma < 0.75 to that with x_gamma > 0.75 decreases as Q^2 increases. The data are compared with the predictions of NLO pQCD and leading-order Monte Carlo programs using various parton distribution functions of the photon. The measurements can be interpreted in terms of a resolved photon component that falls with Q^2 but remains present at values of Q^2 up to 4.5 GeV^2. However, none of the models considered gives a good description of the data.

4 data tables

Dijet cross section for the low ET set of cuts.

Dijet cross section for the high ET set of cuts.

Ratio of Dijet cross sections as a function of Q**2 for XOBS(C=GAMMA) less than to greater than 0.75 for the lower ET cuts.

More…

Energy flow and rapidity gaps between jets in photoproduction at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 24 (2002) 517-527, 2002.
Inspire Record 583863 DOI 10.17182/hepdata.46686

Dijet events in photon-proton collisions in which there is a large pseudorapidity separation Delta eta > 2.5 between the two highest E_T jets are studied with the H1 detector at HERA. The inclusive dijet cross sections are measured as functions of the longitudinal momentum fractions of the proton and photon which participate in the production of the jets, x_pjet and x_gjet respectively, Delta eta, the pseudorapidity separation between the two highest E_T jets, and E_T^gap, the total summed transverse energy between the jets. Rapidity gap events are defined as events in which E_T^gap is less than E_T^cut, for E_T^cut varied between 0.5 and 2.0 GeV. The fraction of dijet events with a rapidity gap is measured differentially in Delta eta, x_pjet and x_gjet. An excess of events with rapidity gaps at low values of E_T^cut is observed above the expectation from standard photoproduction processes. This excess can be explained by the exchange of a strongly interacting colour singlet object between the jets.

16 data tables

The inclusive dijet cross section as a function of X(C=GAMMA).

The inclusive dijet cross section as a function of XP.

The inclusive dijet cross section as a function of the rapidity gap.

More…

Measurement of dijet cross-sections in photoproduction at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 25 (2002) 13-23, 2002.
Inspire Record 581409 DOI 10.17182/hepdata.46764

Dijet cross sections as functions of several jet observables are measured in photoproduction using the H1 detector at HERA. The data sample comprises e^+p data with an integrated luminosity of 34.9 pb^(-1). Jets are selected using the inclusive k_T algorithm with a minimum transverse energy of 25 GeV for the leading jet. The phase space covers longitudinal proton momentum fraction x_p and photon longitudinal momentum fraction x_gamma in the ranges 0.05<x_p<0.6 and 0.1<x_gamma<1. The predictions of next-to-leading order perturbative QCD, including recent photon and proton parton densities, are found to be compatible with the data in a wide kinematical range.

10 data tables

Differential ep cross section for dijet production as a function of the invariant mass of the two jets.

Differential ep cross section for dijet production as a function of the average transverse energy the two jets.

Differential ep cross section for dijet production as a function of the maximum transverse energy the leading jet.

More…

Di-jet production in photon photon collisions at s(ee)**(1/2) = from 189-GeV to 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 31 (2003) 307-325, 2003.
Inspire Record 611415 DOI 10.17182/hepdata.49662

Di-jet producion is studied in collisions of quasi-real photons at e+e- centre- of-mass energies sqrt(s)ee from 189 to 209 GeV at LEP. The data were collected with the OPAL detector. Jets are reconstructed using an inclusive k_t clustering algorithm for all cross-section measurements presented. A cone jet algorithm is used in addition to study the different structure of the jets resulting from either of the algorithms. The inclusive di-jet cross-section is measured as a function of the mean transverse energy Etm(jet) of the two leading jets, and as a functiuon of the estimated fraction of the photon momentum carried by the parton entering the hard sub-process, xg, for different regions of Etm (jet). Angular distribution in di-jet events are measured and used to demonstrate the dominance of quark and gluon initiated processes in different regions of phase space. Furthermore the inclusive di-jet cross-section as a function of |eta(jet)| and |delta eta (jet)| is presented where eta(jet) is the jet pseudo-rapidity. Different regions of the xg+ -xg- -space are explored to study and control the influence of an underlying event. The results are compared to next-to-leading order perturbative QCD calculations and to the predictions of the leading order Monte Carlo generator PYTHIA.

21 data tables

The di-jet cross section as a function of the angle between the jet and thedirection of the incoming parton in the centre-of-mass frame for the region whe re both X(C=GAMMA+) and X(C=GAMMA-) are > 0.75.

The di-jet cross section as a function of the angle between the jet and thedirection of the incoming parton in the centre-of-mass frame for the region whe re both X(C=GAMMA+) and X(C=GAMMA-) are < 0.75.

The di-jet cross section as a function of the mean transverse energy of thedi-jet system for the full X(C=GAMMA+) and X(C=GAMMA-) region.

More…

Dijet production in neutral current deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Eur.Phys.J.C 23 (2002) 13-27, 2002.
Inspire Record 563003 DOI 10.17182/hepdata.46710

Dijet cross sections in neutral current deep inelastic ep scattering have been measured in the range $10 < \Q2 < 10^4$ GeV$^2$ with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb$^{-1}$. The cross sections, measured in the Breit frame using the $\kt$ jet algorithm, are compared with next-to-leading-order perturbative QCD calculations using proton parton distribution functions. The uncertainties of the QCD calculations have been studied. The predictions are in reasonable agreement with the measured cross sections over the entire kinematic range.

13 data tables

Dijet cross section as a function of LOG10(Q**2).

Dijet cross section as a function of LOG10(MEAN(ET)**2/Q**2).

Dijet cross section as a function of LOG10(XI) for the ful Q**2 range.

More…

Measurement of dijet production in neutral current deep inelastic scattering at high Q**2 and determination of alpha(s).

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 507 (2001) 70-88, 2001.
Inspire Record 553352 DOI 10.17182/hepdata.46870

Dijet production has been studied in neutral current deep inelastic e+p scattering for 470 < Q**2 < 20000 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb**{-1}. Dijet differential cross sections are presented in a kinematic region where both theoretical and experimental uncertainties are small. Next-to-leading-order (NLO) QCD calculations describe the measured differential cross sections well. A QCD analysis of the measured dijet fraction as a function of Q**2 allows both a precise determination of alpha_s(M_Z) and a test of the energy-scale dependence of the strong coupling constant. A detailed analysis provides an improved estimate of the uncertainties of the NLO QCD cross sections arising from the parton distribution functions of the proton. The value of alpha_s(M_Z), as determined from the QCD fit, is alpha_s(M_Z) = 0.1166 +- 0.0019 (stat.) {+ 0.0024}_{-0.0033} (exp.)} {+ 0.0057}_{- 0.0044} (th.).

13 data tables

The differential dijet cross section dsig/dZP1.

The differential dijet cross section dsig/dlog10(x).

The differential dijet cross section dsig/dlog10(xi).

More…

Measurement of dijet cross-sections in photoproduction and photon structure

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 483 (2000) 36-48, 2000.
Inspire Record 524764 DOI 10.17182/hepdata.46938

The production of hard di-jet events in photoproduction at HERA is dominated by resolved photon processes in which a parton in the photon with momentum fraction x_gamma is scattered from a parton in the proton. These processes are sensitive to the quark and gluon content of the photon. The differential di-jet cross-section dsigma/dlog(x_gamma) is presented here, measured in tagged photoproduction at HERA using data taken with the H1 detector, corresponding to an integrated luminosity of 7.2 pb^(-1). Using a restricted data sample at high transverse jet energy, E_(T,jet)>6 GeV, the effective parton density f_gamma,eff(x_gamma) = [q(x_gamma) + bar(q)(x_gamma) +9/4g(x_gamma)] in the photon in leading order QCD is measured down to x_gamma=0.05 from which the gluon density in the photon is derived.

2 data tables

The di-jet photoproduction cross section for ET > 4 GeV.

The di-jet photoproduction cross section for ET > 6 GeV after pedestal energy subtraction.


Measurement of Dijet photoproduction at high transverse energies at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 11 (1999) 35-50, 1999.
Inspire Record 500491 DOI 10.17182/hepdata.43992

The cross section for dijet photoproduction at high transverse energies is presented as a function of the transverse energies and the pseudorapidities of the jets. The measurement is performed using a sample of ep-interactions corresponding to an integrated luminosity of 6.3 pb^(-1), recorded by the ZEUS detector.Jets are defined by applying a k_T-clustering algorithm to the hadrons observed in the final state. The measured cross sections are compared to next-to-leading order QCD calculations. In a kinematic regime where theoretical uncertainties are expected to be small, the measured cross sections are higher than these calculations.

24 data tables

The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.

The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.

The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.

More…