Single identified hadron spectra from s(NN)**1/2 = 130-GeV Au + Au collisions.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 69 (2004) 024904, 2004.
Inspire Record 623413 DOI 10.17182/hepdata.149578

Transverse momentum spectra and yields of hadrons are measured by the PHENIX collaboration in Au + Au collisions at sqrt(s_NN) = 130 GeV at the Relativistic Heavy Ion Collider (RHIC). The time-of-flight resolution allows identification of pions to transverse momenta of 2 GeV/c and protons and antiprotons to 4 GeV/c. The yield of pions rises approximately linearly with the number of nucleons participating in the collision, while the number of kaons, protons, and antiprotons increases more rapidly. The shape of the momentum distribution changes between peripheral and central collisions. Simultaneous analysis of all the p_T spectra indicates radial collective expansion, consistent with predictions of hydrodynamic models. Hydrodynamic analysis of the spectra shows that the expansion velocity increases with collision centrality and collision energy. This expansion boosts the particle momenta, causing the yield from soft processes to exceed that for hard to large transverse momentum, perhaps as large as 3 GeV/c.

30 data tables

The sources of systematic uncertainties in $\langle p_T \rangle$ and $dN$/$dy$.

The $dN$/$dy$ at midrapidity for hadrons produced at midrapidity in each centrality class.

The resulting inverse slopes in MeV after fitting an $m_T$ exponential to the spectra in the range $m_T$-$m_0$ < 1 GeV in each event centrality classes. The pion resonance region is excluded in the fits. The equivalent $p_T$ fit range for each particle is shown accordingly.

More…

Net charge fluctuations in Au + Au interactions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 082301, 2002.
Inspire Record 584417 DOI 10.17182/hepdata.143184

Data from Au + Au interactions at sqrt(s_NN) = 130 GeV, obtained with the PHENIX detector at RHIC, are used to investigate local net charge fluctuations among particles produced near mid-rapidity. According to recent suggestions, such fluctuations may carry information from the Quark Gluon Plasma. This analysis shows that the fluctuations are dominated by a stochastic distribution of particles, but are also sensitive to other effects, like global charge conservation and resonance decays.

5 data tables

The normalized variance $v(Q)$as a function of $n_{ch}$.

The normalized variance $v(R)$ as a function of $n_{ch}$.

The normalized variance $v(Q)$ for different centrality classes.

More…

Event-by-event fluctuations in mean p(T) and mean e(T) in s(NN)**(1/2) = 130-GeV Au + Au collisions.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 66 (2002) 024901, 2002.
Inspire Record 584452 DOI 10.17182/hepdata.143150

Distributions of event-by-event fluctuations of the mean transverse momentum and mean transverse energy near mid-rapidity have been measured in Au+Au collisions at sqrt(s_NN) = 130 GeV at RHIC. By comparing the distributions to what is expected for statistically independent particle emission, the magnitude of non-statistical fluctuations in mean transverse momentum is determined to be consistent with zero. Also, no significant non-random fluctuations in mean transverse energy are observed. By constructing a fluctuation model with two event classes that preserve the mean and variance of the semi-inclusive p_T or e_T spectra, we exclude a region of fluctuations in sqrt(s_NN) = 130 GeV Au+Au collisions.

5 data tables

The $N_{tracks}$ distribution for the $0-10\%$ centrality class (data points) compared to the $N_{mix}$ distribution from the mixed event sample (curve).

The $M_{p_T}$ distributions for four different centrality classes. The curves are the random baseline mixed event distributions.

The residual distribution between the data and mixed event $M_{p_T}$ in units of standard deviations for all centrality classes. The total ${\chi}^2$ and the number of degrees of freedom for the $0-5\%$, $0-10\%$, $10-20\%$, $20-30\%$ centrality classes are 89.0/39, 155.7/40,163.3/47, and 218.4/61, respectively.

More…

Measurement of single electrons and implications for charm production in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 192303, 2002.
Inspire Record 582654 DOI 10.17182/hepdata.142963

Transverse momentum spectra of electrons from Au+Au collisions at sqrt(s_NN) = 130 GeV have been measured by the PHENIX experiment at RHIC. The spectra show an excess above the background from photon conversions and light hadron decays. The electron signal is consistent with that expected from semi-leptonic decays of charm. The yield of the electron signal dN_e/dy for p_T > 0.8 GeV/c is 0.025 +/- 0.004 (stat.) +/- 0.010 (sys.) in central collisions, and the corresponding charm cross section is 380 +/- 60 (stat.) +/- 200 (sys.) micro barns per binary nucleon-nucleon collision.

8 data tables

Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV.

Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV.

Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV. The upper limit for 1.9 GeV/$c$ is 4.10224e-05.

More…

Systematic studies of the centrality and s(NN)**(1/2) dependence of dE(T)/d mu and d N(ch)/d mu in heavy ion collisions at mid-rapidity.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 71 (2005) 034908, 2005.
Inspire Record 659749 DOI 10.17182/hepdata.142940

The PHENIX experiment at RHIC has measured transverse energy and charged particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV as a function of centrality. The presented results are compared to measurements from other RHIC experiments, and experiments at lower energies. The sqrt(s_NN) dependence of dE_T/deta and dN_ch/deta per pair of participants is consistent with logarithmic scaling for the most central events. The centrality dependence of dE_T/deta and dN_ch/deta is similar at all measured incident energies. At RHIC energies the ratio of transverse energy per charged particle was found independent of centrality and growing slowly with sqrt(s_NN). A survey of comparisons between the data and available theoretical models is also presented.

13 data tables

$B$/$A$ ratio from the fit to the data.

$B$/$A$ ratio from the fit to the data.

Parameter $\alpha$ from the fit to the data.

More…

Flow measurements via two-particle azimuthal correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 212301, 2002.
Inspire Record 585347 DOI 10.17182/hepdata.141931

Two particle azimuthal correlation functions are presented for charged hadrons produced in Au + Au collisions at RHIC sqrt(s_NN) = 130 GeV. The measurements permit determination of elliptic flow without event-by-event estimation of the reaction plane. The extracted elliptic flow values v_2 show significant sensitivity to both the collision centrality and the transverse momenta of emitted hadrons, suggesting rapid thermalization and relatively strong velocity fields. When scaled by the eccentricity of the collision zone, epsilon, the scaled elliptic flow shows little or no dependence on centrality for charged hadrons with relatively low p_T. A breakdown of this epsilon scaling is observed for charged hadrons with p_T > 1.0 GeV/c for the most central collisions.

8 data tables

Azimuthal correlation functions for charged hadrons as a function of centrality and $p_T$ selection. The solid curves represent Fourier fits following Eq. (2). Error bars are statistical only.

$v_2$ vs. centrality for several $p_T$ selections. [F] and [A] indicate results obtained with the fixed-$p_T$ and assorted-$p_T$ methods respectively. Systematic errors are estimated to be $\sim 5$%; they are dominated by the normalization of the correction function for real tracks. For the centrality range 0-5%, the data points are statistically uncertain and the points are omitted.

$v_2$ vs. centrality for several $p_T$ selections. [F] and [A] indicate results obtained with the fixed-$p_T$ and assorted-$p_T$ methods respectively. Systematic errors are estimated to be $\sim 5$%; they are dominated by the normalization of the correction function for real tracks. For the centrality range 0-5%, the data points are statistically uncertain and the points are omitted.

More…

Centrality dependence of the high p(T) charged hadron suppression in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, Stephen Scott ; Ajitanand, N.N. ; et al.
Phys.Lett.B 561 (2003) 82-92, 2003.
Inspire Record 590820 DOI 10.17182/hepdata.141648

PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.

6 data tables

Number of participants and binary collisions and their systematic errors for the individual centrality selections used in this analysis. Also given is the ratio of the number of binary collisions for the most central sample relative to the one for each sample. The last column quantifies the ratio of binary collisions to participant pairs.

The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the $p_T$ dependence of $p/h$ for minimum bias events.

The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the centrality dependence of $p/h$ for $p_T >$ 1.8 GeV/$c$.

More…

Transverse mass dependence of two-pion correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 192302, 2002.
Inspire Record 581871 DOI 10.17182/hepdata.141647

Two-pion correlations in sqrt(s_NN)=130 GeV Au+Au collisions at RHIC have been measured over a broad range of pair transverse momentum k_T by the PHENIX experiment at RHIC. The k_T dependent transverse radii are similar to results from heavy ion collisions at sqrt(s_NN) = 4.1, 4.9, and 17.3 GeV, whereas the longitudinal radius increases monotonically with beam energy. The ratio of the outwards to sidewards transverse radii (R_out/R_side) is consistent with unity and independent of k_T.

6 data tables

HBT radii for pion pairs as a function of $k_T$ measured at mid-rapidity for various energies for Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV. Values used are from the Longitudinal Co-Moving System (LCMS) frame.

HBT radii for pion pairs as a function of $k_T$ measured at mid-rapidity for various energies for Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV. Values used are from the Pair Center-of-Mass System (PCMS) frame.

The top panel shows the measured $R_{side}$ from identical pions for PHENIX. The bottom panel shows the ratio $R_{out}/R_{side}$ as a function of $k_T$. Longitudinal Co-Moving System (LCMS) frame for $\pi^+$

More…

Measurement of the Lambda and Antilambda particles in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 092302, 2002.
Inspire Record 585561 DOI 10.17182/hepdata.139716

We present results on the measurement of lambda and lambda^bar production in Au+Au collisions at sqrt(s_NN)=130 GeV with the PHENIX detector at RHIC. The transverse momentum spectra were measured for minimum bias and for the 5% most central events. The lambda^bar/lambda ratios are constant as a function of p_T and the number of participants. The measured net lambda density is significantly larger than predicted by models based on hadronic strings (e.g. HIJING) but in approximate agreement with models which include the gluon junction mechanism.

9 data tables

Transverse momentum spectra of $\Lambda$ and $\bar{\Lambda}$ for minimum-bias and for the $5\%$ most central events.

The ratio of $\bar{\Lambda}$/$\Lambda$ as a function of $p_T$.

The ratio of $\bar{\Lambda}$/$\Lambda$ as a function of the number of participants.

More…

Beam energy dependence of net-$\Lambda$ fluctuations measured by the STAR experiment at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 024903, 2020.
Inspire Record 1776194 DOI 10.17182/hepdata.113523

The measurements of particle multiplicity distributions have generated considerable interest in understanding the fluctuations of conserved quantum numbers in the Quantum Chromodynamics (QCD) hadronization regime, in particular near a possible critical point and near the chemical freeze-out. We report the measurement of efficiency and centrality bin width corrected cumulant ratios ($C_{2}/C_{1}$, $C_{3}/C_{2}$) of net-$\Lambda$ distributions, in the context of both strangeness and baryon number conservation, as a function of collision energy, centrality and rapidity. The results are for Au + Au collisions at five beam energies ($\sqrt{s_{NN}}$ = 19.6, 27, 39, 62.4 and 200 GeV) recorded with the Solenoidal Tracker at RHIC (STAR). We compare our results to the Poisson and negative binomial (NBD) expectations, as well as to Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and Hadron Resonance Gas (HRG) model predictions. Both NBD and Poisson baselines agree with data within the statistical and systematic uncertainties. The ratios of the measured cumulants show no features of critical fluctuations. The chemical freeze-out temperatures extracted from a recent HRG calculation, which was successfully used to describe the net-proton, net-kaon and net-charge data, indicate $\Lambda$ freeze-out conditions similar to those of kaons. However, large deviations are found when comparing to temperatures obtained from net-proton fluctuations. The net-$\Lambda$ cumulants show a weak, but finite, dependence on the rapidity coverage in the acceptance of the detector, which can be attributed to quantum number conservation.

35 data tables

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 19.6 GeV. Values are shown with NBD, Poisson and UrQMD predictions. Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 27 GeV. Values are shown with NBD, Poisson and UrQMD predictions.Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 39 GeV. Values are shown with NBD, Poisson and UrQMD predictions.Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

More…

Rapidity dependence of antiproton to proton ratios in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 87 (2001) 112305, 2001.
Inspire Record 558361 DOI 10.17182/hepdata.110347

Measurements, with the BRAHMS detector, of the antiproton to proton ratio at central and forward rapidities are presented for Au+Au reactions at sqrt{s_{NN}}=130 GeV, and for three different collision centralities. For collisions in the 0-40% centrality range we find $N(\bar{{\rm p}})/N({\rm p}) = 0.64 +- 0.04 (stat.) +- 0.06 (syst.) at y ~0, 0.66 +- 0.03 +- 0.06 at y ~ 0.7, and 0.41 +- 0.04 +- 0.06 at y ~ 2. The ratios are found to be nearly independent of collision centrality and transverse momentum. The measurements demonstrate that the antiproton and proton rapidity densities vary differently with rapidity, and indicate that a net-baryon free midrapidity plateau (Bjorken limit) is not reached at this RHIC energy.

6 data tables

$\overline{\mathrm{p}}/\mathrm{p}$ versus $\mathrm{Centrality}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

More…

Charged particle densities from Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The BRAHMS collaboration Bearden, I.G ; Beavis, D ; Besliu, C ; et al.
Phys.Lett.B 523 (2001) 227-233, 2001.
Inspire Record 561518 DOI 10.17182/hepdata.110252

We present charged particle densities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at sqrt{s_{NN}}=130 GeV. An integral charged particle multiplicity of 3860+/-300 is found for the 5% most central events within the pseudorapidity range -4.7 <= eta <= 4.7. At mid-rapidity an enhancement in the particle yields per participant nucleon pair is observed for central events. Near to the beam rapidity, a scaling of the particle yields consistent with the ``limiting fragmentation'' picture is observed. Our results are compared to other recent experimental and theoretical discussions of charged particle densities in ultra-relativistic heavy-ion collisions.

7 data tables

NPART, $\mathrm{d}N/\mathrm{d}\eta$, $N_{\mathrm{ch}}^{\mathrm{tot}}$ versus $\mathrm{Centrality}$ for $x^{\pm}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

$\mathrm{d}N/\mathrm{d}\eta$ versus $\eta$ for $x^{\pm}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

$\mathrm{d}N/\mathrm{d}\eta$ versus $\eta$ for $x^{\pm}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

More…

Pion kaon correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 91 (2003) 262302, 2003.
Inspire Record 624731 DOI 10.17182/hepdata.104926

Pion-kaon correlation functions are constructed from central Au+Au data taken at $\sqrt{s_{NN}} = 130$ GeV. The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e. transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.

7 data tables

Pion-kaon correlation functions and ratios of correlation functions. Errors are statistical only.

Pion-kaon correlation functions and ratios of correlation functions. Errors are statistical only.

Pion-kaon correlation functions and ratios of correlation functions. Errors are statistical only.

More…

Event-by-event < p(t) > fluctuations in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 71 (2005) 064906, 2005.
Inspire Record 626905 DOI 10.17182/hepdata.102942

We present the first large-acceptance measurement of event-wise mean transverse momentum mean p_t fluctuations for Au-Au collisions at nucleon-nucleon center-of-momentum collision energy sqrt{s_{NN}} = 130 GeV. The observed non-statistical mean p_t fluctuations substantially exceed in magnitude fluctuations expected from the finite number of particles produced in a typical collision. The r.m.s. fractional width excess of the event-wise mean p_t distribution is 13.7 +/- 0.1(stat) +/- 1.3(syst)% relative to a statistical reference, for the 15% most-central collisions and for charged hadrons within pseudorapidity range |eta|<1, 2pi azimuth and 0.15 < p_t < 2 GeV/c. The width excess varies smoothly but non-monotonically with collision centrality, and does not display rapid changes with centrality which might indicate the presence of critical fluctuations. The reported mean p_t fluctuation excess is qualitatively larger than those observed at lower energies and differs markedly from theoretical expectations. Contributions to mean p_t mean fluctuations from semi-hard parton scattering in the initial state and dissipation in the bulk colored medium are discussed.

3 data tables

Event frequency distribution on $\sqrt{n}(\langle p_t\rangle - \hat{p}_t)/\sigma\hat{p}_t$ for 80% of primary charged hadrons in $|\eta|$ < 1 for 183k central events

Difference in upper panel between data and gamma reference

Centrality dependences of the measured charge independent (CI) and charge dependent (CD) difference factors $\Delta\sigma_{p_t:n}$ plus the corresponding values extrapolated to 100% tracking efficiency. Statistical errors $\pm$ 0.5 MeV/c; systematic errors are $\pm$ 9%. Difference factors extrapolated to 100% tracking efficiency and no secondary particle contamination. Uncertainties are $\pm$ 12%.


Minijet deformation and charge-independent angular correlations on momentum subspace (eta, phi) in Au-Au collisions at s(NN)**(1/2) = 130-GeV

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 73 (2006) 064907, 2006.
Inspire Record 663650 DOI 10.17182/hepdata.102089

First measurements of charge-independent correlations on angular difference variables $\eta_1 - \eta_2$ (pseudorapidity) and $\phi_1 - \phi_2$ (azimuth) are presented for primary charged hadrons with transverse momentum $0.15 \leq p_t \leq 2$ GeV/$c$ and $|\eta| \leq 1.3$ from Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV. Strong charge-independent angular correlations are observed associated with jet-like structures and elliptic flow. The width of the jet-like peak on $\eta_1 - \eta_2$ increases by a factor 2.3 from peripheral to central collisions, suggesting strong coupling of semi-hard scattered partons to a longitudinally-expanding medium. New methods of jet analysis introduced here provide evidence for nonperturbative QCD medium effects in heavy ion collisions.

4 data tables

Two-particle CI joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for most-central collisions.

Two-particle CI joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for mid-central collisions.

Two-particle CI joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for mid-peripheral collisions.

More…

Hadronization geometry and charge-dependent number autocorrelations on axial momentum space in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 634 (2006) 347-355, 2006.
Inspire Record 653486 DOI 10.17182/hepdata.102088

We present the first measurements of charge-dependent correlations on angular difference variables $\eta_1 - \eta_2$ (pseudorapidity) and $\phi_1 - \phi_2$ (azimuth) for primary charged hadrons with transverse momentum $0.15 \leq p_t \leq 2$ GeV/$c$ and $|\eta| \leq 1.3$ from Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV. We observe correlation structures not predicted by theory but consistent with evolution of hadron emission geometry with increasing centrality from one-dimensional fragmentation of color strings along the beam direction to an at least two-dimensional hadronization geometry along the beam and azimuth directions of a hadron-opaque bulk medium.

6 data tables

Normalized LS pair-number ratios $\widehat{r} [X(p_{t1}),X(p_{t2})]-1$ for collisions in centrality class (a) (most-central) in $(\eta_{1},\eta_{2})$.

Normalized LS pair-number ratios $\widehat{r} [X(p_{t1}),X(p_{t2})]-1$ for collisions in centrality class (a) (most-central) in $(\phi_{1},\phi_{2})$.

Two-particle CD joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for most-central collisions.

More…

Incident energy dependence of p(t) correlations at RHIC.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 72 (2005) 044902, 2005.
Inspire Record 681688 DOI 10.17182/hepdata.102946

We present results for two-particle transverse momentum correlations, <dpt,i dpt,j>, as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

8 data tables

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 20 GeV for the 5% most central collisions.

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 62 GeV for the 5% most central collisions.

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 130 GeV for the 5% most central collisions.

More…

The Energy dependence of p(t) angular correlations inferred from mean-p(t) fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
J.Phys.G 34 (2007) 451-466, 2007.
Inspire Record 717232 DOI 10.17182/hepdata.102948

We present the first study of the energy dependence of $p_t$ angular correlations inferred from event-wise mean transverse momentum $<p_{t} >$ fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related $<p_{t}>$ fluctuations near 10 GeV.

5 data tables

Per-particle fluctuation dependence on pseudorapidity scale $\delta\eta$ in central collisions.

Per-particle fluctuation dependence on pseudorapidity scale $\delta\eta$ in central collisions.

Centrality dependence of $<p_t>$ fluctuations in the STAR acceptance for four energies. $\nu$ is the mean participant path length (please consult text).

More…

Transverse momentum correlations and minijet dissipation in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
J.Phys.G 34 (2007) 799-816, 2007.
Inspire Record 656302 DOI 10.17182/hepdata.102087

Measurements of two-particle correlations on transverse momentum $p_t$ for Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV are presented. Significant large-momentum-scale correlations are observed for charged primary hadrons with $0.15 \leq p_t \leq 2$ GeV/$c$ and pseudorapidity $|\eta| \leq 1.3$. Such correlations were not observed in a similar study at lower energy and are not predicted by theoretical collision models. Their direct relation to mean-$p_t$ fluctuations measured in the same angular acceptance is demonstrated. Positive correlations are observed for pairs of particles which have large $p_t$ values while negative correlations occur for pairs in which one particle has large $p_t$ and the other has much lower $p_t$. The correlation amplitudes per final state particle increase with collision centrality. The observed correlations are consistent with a scenario in which the transverse momentum of hadrons associated with initial-stage semi-hard parton scattering is dissipated by the medium to lower $p_t$.

4 data tables

Symmetrized pair-density net ratios $\widehat{r} [X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for most-central Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

Symmetrized pair-density net ratios $\widehat{r}[X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for mid-central Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

Symmetrized pair-density net ratios $\widehat{r}[X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for mid-peripheral Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

More…

Beam energy dependence of rapidity-even dipolar flow in Au+Au collisions

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 784 (2018) 26-32, 2018.
Inspire Record 1669807 DOI 10.17182/hepdata.100168

New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient \vone, are presented for transverse momenta $\mathrm{p_T}$, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range $\mathrm{\sqrt{s_{_{NN}}}} = 7.7 - 200$ GeV. The measurements underscore the importance of momentum conservation and the characteristic dependencies on $\mathrm{\sqrt{s_{_{NN}}}}$, centrality and $\mathrm{p_T}$ are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and $\mathrm{p_T}$ dependencies of $\mathrm{v^{even}_{1}}$, as well as an observed similarity between its excitation function and that for $\mathrm{v_3}$, could serve as constraints for initial-state models. The $\mathrm{v^{even}_{1}}$ excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.

5 data tables

$v_{11}$ vs. $p_{T}^{b}$ for several selections of $p_{T}^{a}$ for 0-5 central Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV. The curve shows the result of the simultaneous fit.

Extracted values of $v^{even}_{1}$ vs. $p_{T}$ for 0-10 central Au+Au collisions for several values of $\sqrt{s_{_{NN}}}$ as indicated; the $v^{even}_{1}$ values are obtained via fits. The curve in panel (a) shows the result from a viscous hydrodynamically based predictions.

(a) Centrality dependence of $v^{even}_{1}$ for $0.4 \lt p_{T} \lt 0.7$ GeV/c for Au+Au collisions at $\sqrt{s_{_{NN}}} = 200, 39$ and $19.6$ GeV; (b) $K$ vs. $\langle N_{ch} \rangle^{-1}$ for the $v^{even}_{1}$ values shown in (a). The $\langle N_{ch} \rangle$ values correspond to the centrality intervals indicated in panel (a).

More…

K/pi Fluctuations at Relativistic Energies

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 103 (2009) 092301, 2009.
Inspire Record 810902 DOI 10.17182/hepdata.98971

We report results for $K/\pi$ fluctuations from Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for $K/\pi$ fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at $\sqrt{s_{NN}}$ = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of $K/\pi$ fluctuations as well as results for $K^{+}/\pi^{+}$, $K^{-}/\pi^{-}$, $K^{+}/\pi^{-}$, and $K^{-}/\pi^{+}$ fluctuations. We observe that the $K/\pi$ fluctuations scale with the multiplicity density, $dN/d\eta$, rather than the number of participating nucleons.

5 data tables

(Color online) The event-by-event $K/\pi$ ratio for 200 GeV Au+Au central collisions (0-5%) compared with the same quantity calculated from mixed events. The inset shows the ratio of the distribution from real events to that from mixed events. The errors shown are statistical.

(Color online) The event-by-event $K/\pi$ ratio for 200 GeV Au+Au central collisions (0-5%) compared with the same quantity calculated from mixed events. The inset shows the ratio of the distribution from real events to that from mixed events. The errors shown are statistical.

(Color online) Measured dynamical $K/\pi$ fluctuations in terms of σdyn for central collisions (0 - 5%) of 19.6, 62.4, 130, and 200 GeV Au+Au compared with the central collisions (0 - 3.5%) of Pb+Pb from NA49 [7] and the statistical hadronization (SH) model of Ref. [14]. The solid line represents the relationship of the incident energy dependence of $\sigma_{dyn}$ in central collisions to the collision centrality dependence of $\nu_{dyn,K\pi}$ at higher energies. Both statistical (vertical line with horizontal bar) and systematic (no vertical line) error bars are shown for the experimental data.

More…

Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 024906, 2009.
Inspire Record 791177 DOI 10.17182/hepdata.98972

We present measurements of net charge fluctuations in $Au + Au$ collisions at $\sqrt{s_{NN}} = $ 19.6, 62.4, 130, and 200 GeV, $Cu + Cu$ collisions at $\sqrt{s_{NN}} = $ 62.4, 200 GeV, and $p + p$ collisions at $\sqrt{s} = $ 200 GeV using the dynamical net charge fluctuations measure $\nu_{+-{\rm,dyn}}$. We observe that the dynamical fluctuations are non-zero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate $1/N_{ch}$ scaling, but display approximate $1/N_{part}$ scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

10 data tables

(Color online) Dynamical net charge fluctuations, $\nu_{+−,dyn}$, of particles produced within pseudorapidity $|\eta|$ < 0.5, as function of the number of participating nucleons.

(Color online) Corrected values of dynamical net charge fluctuations ($\nu^{corr}_{+−,dyn}$) as a function of $\sqrt{s_{NN}}$. See text for details.

(Color online) Dynamical net charge fluctuations, $\nu_{+−,dyn}$, of particles produced with pseudorapidity $|\eta|$ < 0.5 scaled by (a) the multiplicity, $dN_{ch}/d\eta$. The dashed line corresponds to charge conservation effect and the solid line to the prediction for a resonance gas, (b) the number of participants, and (c) the number of binary collisions.

More…

$\rho^{0}$ Photoproduction in AuAu Collisions at $\sqrt{s_{NN}}$=62.4 GeV with STAR

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014910, 2012.
Inspire Record 919778 DOI 10.17182/hepdata.101342

Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent $\rho^0$ photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent $\rho^0$ photoproduction with nuclear breakup is $10.5\pm1.5\pm 1.6$ mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is $2.8\pm0.6$, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed $15\pm 55$% increase between 130 GeV and 200 GeV.

5 data tables

Acceptance corrected invariant mass distributions for the coherently produced $\rho^0$ candidates collected with trigger A (left) and B (right). The fit function (solid) encompasses the Breit-Wigner (dashed), the mass independent contribution from direct $\pi^+\pi^-$ production (dash-dotted), and the interference term (dotted). The hatched area is the contribution from the combinatorial background. The statistical errors are shown.

Acceptance corrected invariant mass distributions for the coherently produced $\rho^0$ candidates collected with trigger A (left) and B (right). The fit function (solid) encompasses the Breit-Wigner (dashed), the mass independent contribution from direct $\pi^+\pi^-$ production (dash-dotted), and the interference term (dotted). The hatched area is the contribution from the combinatorial background. The statistical errors are shown.

Transverse momentum distribution of the $\rho^0$ candidates (open distribution) overlaid by the combinatorial background estimated with like-sign pairs (not corrected to the acceptance and reconstruction efficiency) and scaled to match in the high transverse momentum region, $p_T$ ≥ 250 MeV/$c$ (hatched distribution). The plot is based on the dataset collected with trigger B.

More…

Elliptic flow from two- and four-particle correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.C 66 (2002) 034904, 2002.
Inspire Record 587825 DOI 10.17182/hepdata.98926

Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (non-flow correlations). Using data for Au + Au collisions at sqrt{s_{NN}} = 130 GeV from the STAR TPC, it is found that four-particle correlation analyses can reliably separate flow and non-flow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of two. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.

30 data tables

Correlation between the event plane angles determined from pairs of subevents partitioned randomly (circles), partitioned with opposite signs of pseudorapidity (squares) and partitioned with opposite signs of charge (crosses). The correlation is plotted as a function of centrality, namely, charged particle multiplicity $n_{ch}$ divided by the maximum observed charged multiplicity, $n_{max}$.

The event plane resolution for full events as a function of centrality, using randomly partitioned subevents with (circles) and without (triangles) $p_{t}$ weight.

Elliptic flow signal $v_{2}$ as a function of centrality, from study of the correlation between particle pairs consisting of randomly chosen particles (circles), particles with opposite signs of charge (crosses), particles with the same signs of charge (triangles), and particles with opposite signs of pseudorapidity (squares).

More…

Multiplicity distribution and spectra of negatively charged hadrons in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 112303, 2001.
Inspire Record 557767 DOI 10.17182/hepdata.99049

The minimum bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons (h-) in Au+Au interactions at sqrt(s_nn) = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dNh-/deta|_{eta = 0} = 280 +- 1(stat)+- 20(syst), an increase per participant of 38% relative to ppbar collisions at the same energy. The mean transverse momentum is 0.508 +- 0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h- yield per participant is a strong function of pt. The pseudorapidity distribution is almost constant within |eta|<1.

4 data tables

Normalized multiplicity distribution of $h^{−}$ with $p_{T} > 100$ MeV/$c$ at $|\eta| < 0.5$ in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV. Systematic error on the vertical scale is estimated to be $10\%$. The systematic error on the horizontal scale is $6\%$ for the entire range of multiplicity. The shaded area is $5\%$ most central collisions, selected by ZDC coincidence. The solid curve is the prediction from the HIJING model.

$h^{−}$ $p_{T}$-spectra for the $5\%$ most central Au+Au collisions at midrapidity ($|\eta| < 0.1$) for several systems. The correlated systematical error is estimated to be below $6\%$. The curves are power-law fits to the data.

ratio of STAR and scaled UA1 $p_{T}$-distributions. The errors given are the errors of the STAR data only and do not include the systematic errors from the scaling of the UA1 data to $130$ GeV (i.e., the shaded region in Fig.2 lower panel). The STAR data is for the $5\%$ most central collisions.

More…

Mid-rapidity Lambda and Antilambda production in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 092301, 2002.
Inspire Record 584141 DOI 10.17182/hepdata.99050

We report the first measurement of strange ($\Lambda$) and anti-strange ($\bar{\Lambda}$) baryon production from $\sqrt{s_{_{NN}}}=130$ GeV Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Rapidity density and transverse mass distributions at mid-rapidity are presented as a function of centrality. The yield of $\Lambda$ and $\bar{\Lambda}$ hyperons is found to be approximately proportional to the number of negative hadrons. The production of $\bar{\Lambda}$ hyperons relative to negative hadrons increases very rapidly with transverse momentum. The magnitude of the increase cannot be described by existing hadronic string fragmentation models.

5 data tables

Transverse mass distributions of $\Lambda$ at mid-rapidity ($|y|<0.5$) for selected centrality bins. Only statistical errors are listed. Combined systematic errors estimated to be $10\%$. The dashed lines are Boltzmann fits. Note that multiplicative factors have been applied to data from the two most central data sets for display.

Transverse mass distributions of $\bar\Lambda$ at mid-rapidity ($|y|<0.5$) for selected centrality bins. Only statistical errors are listed. Combined systematic errors estimated to be $10\%$. The dashed lines are Boltzmann fits. Note that multiplicative factors have been applied to data from the two most central data sets for display.

The mid-rapidity $\bar\Lambda$ ($|y|<0.5$) transverse momentum distribution from the top $5\%$ most central collisions. For comparison the distributions for negative hadrons ($d^{2}N/(2 \pi p_{T})dp_{T}d\eta$, $|\eta|<0.1$) and anti-protons ($|y|<0.1$) for the similar centrality bin are included. Only statistical errors are listed. Statistical errors are less than the size of the data points. Combined systematic errors on hyperons estimated to be $10\%$. Correlated systematic errors for negative hadrons estimated to be $6\%$. Systematic errors on antiprotons are $8\%$ point-to-point and $10\%$ in the overall normalization.

More…

Multiplicity fluctuations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 68 (2003) 044905, 2003.
Inspire Record 623047 DOI 10.17182/hepdata.99051

We present the results of charged particle fluctuations measurements in Au + Au collisions at $\sqrt{s_{NN}}=130$ GeV using the STAR detector. Dynamical fluctuations measurements are presented for inclusive charged particle multiplicities as well as for identified charged pions, kaons, and protons. The net charge dynamical fluctuations are found to be large and negative providing clear evidence that positive and negative charged particle production is correlated within the pseudorapidity range investigated. Correlations are smaller than expected based on model-dependent predictions for a resonance gas or a quark gluon gas which undergoes fast hadronization and freeze-out. Qualitative agreement is found with comparable scaled p+p measurements and a HIJING model calculation based on independent particle collisions, although a small deviation from the 1/N scaling dependence expected from this model is observed.

3 data tables

Dynamical fluctuations, $ν_{+−,dyn}$, measured in $|\eta| ≤ 0.5$ as a function of the collision centrality estimated with the total (uncorrected) multiplicity, M, in $|\eta| < 0.75$. Only statistical errors are listed. Systematic errors estimated at $5\%$.

$\langle N\rangle ν_{+−,dyn}$ measured in $|\eta| ≤ 0.5$ vs M (opened circles) compared to the charge conservation limit (dotted line), resonance gas expectation based on ref.[5](solid line); and HIJING calculation (solid squares). Only statistical errors are listed. Systematic errors estimated at $10\%$.

Fluctuations $ν_{+−,dyn}$ for the $6\%$ most central collisions as a function of the range of integrated pseudorapidities. The expected limit due to charge conservation is shown as a dotted line.


Measurements of $\phi$ meson production in relativistic heavy-ion collisions at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 064903, 2009.
Inspire Record 797805 DOI 10.17182/hepdata.99047

We present results for the measurement of $\phi$ meson production via its charged kaon decay channel $\phi \to K^+K^-$ in Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$, 130, 200 GeV, and in p+p and d+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV from the STAR experiment at RHIC. The mid-rapidity ($|y|<0.5$) $\phi$ meson spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the spectra from p+p, d+Au and peripheral Au+Au collisions show power-law tails at intermediate and high transverse momenta ($p_{T}$) and are described better by Levy distributions. The constant $\phi/K^-$ yield ratio vs. beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for $\phi$ production at RHIC. The $\Omega/\phi$ yield ratio as a function of $p_{T}$ is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/c, but disagrees at higher transverse momenta. The measured nuclear modification factor, $R_{dAu}$, for the $\phi$ meson increases above unity at intermediate $p_{T}$, similar to that for pions and protons, while $R_{AA}$ is suppressed due to jet quenching in central Au+Au collisions. Number of constituent quark scaling of both $R_{cp}$ and $v_{2}$ for the $\phi$ meson with respect to other hadrons in Au+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV at intermediate $p_{T}$ is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate $p_{T}$ region at RHIC.

81 data tables

Background-subtracted invariant mass distributions at 0.4 < $p_{T}$ < 0.8 GeV/c in d + Au 200 GeV collisions (0–100%) with (solid points) and without (open points) the $\delta$-dipangle cut. The dashed curves show a Breit-Wigner (see the text for details) + linear background function fit to the case with the $\delta$-dip-angle cut.

Background-subtracted invariant mass distributions at 0.4 < $p_{T}$ < 0.8 GeV/c in d + Au 200 GeV collisions (0–100%) with (solid points) and without (open points) the $\delta$-dipangle cut. The dashed curves show a Breit-Wigner (see the text for details) + linear background function fit to the case with the $\delta$-dip-angle cut.

Upper panels: same-event (full points) and mixed-event (solid line) $K^{+}K^{-}$ invariant mass distributions at 0.6 < $p_{T}$ < 1.4 GeV/c in p + p 200 GeV collisions (a), 0.8 < $p_{T}$ < 1.2 GeV/c in Au + Au 62.4 GeV collisions (60–80%) (c), and 0.8 < $p_{T}$ < 1.2 GeV/c in Au + Au 200 GeV collisions (0–10%) (e). Lower panels: the corresponding $\phi$ meson mass peaks after subtracting the background. Dashed curves show a Breit-Wigner + linear background function fit in (b), (d). In (f), both linear and quadratic backgrounds are shown as dashed and dot-dashed lines, respectively.

More…

Multiplicity and pseudorapidity distributions of charged particles and photons at forward pseudorapidity in Au + Au collisions at s(NN)**(1/2) = 62.4-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 73 (2006) 034906, 2006.
Inspire Record 697905 DOI 10.17182/hepdata.98930

We present the centrality dependent measurement of multiplicity and pseudorapidity distributions of charged particles and photons in Au + Au collisions at sqrt{s_NN} = 62.4 GeV. The charged particles and photons are measured in the pseudorapidity region 2.9 < eta < 3.9 and 2.3 < eta < 3.7, respectively. We have studied the scaling of particle production with the number of participating nucleons and the number of binary collisions. The photon and charged particle production in the measured pseudorapidity range has been shown to be consistent with energy independent limiting fragmentation behavior. The photons are observed to follow a centrality independent limiting fragmentation behavior while for the charged particles it is centrality dependent. We have carried out a comparative study of the pseudorapidity distributions of positively charged hadrons, negatively charged hadrons, photons, pions, net protons in nucleus--nucleus collisions and pseudorapidity distributions from p+p collisions. From these comparisons we conclude that baryons in the inclusive charged particle distribution are responsible for the observed centrality dependence of limiting fragmentation. The mesons are found to follow an energy independent behavior of limiting fragmentation while the behavior of baryons seems to be energy dependent.

11 data tables

(Color Online) Variation of $N_{ch}$ normalized to the number of participating nucleon pair in the FTPC coverage $(2.9 \leq \eta \leq 3.9)$ and $N_{\gamma}$ normalized to the number of participating nucleon pair in the PMD acceptance $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{part}$. The lower band shows the uncertainty in the ratio due to uncertainties in $N_{part}$ calculations.

(Color Online) Variation of $N_{ch}$ normalized to the number of participating nucleon pair in the FTPC coverage $(2.9 \leq \eta \leq 3.9)$ and $N_{\gamma}$ normalized to the number of participating nucleon pair in the PMD acceptance $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{part}$. The lower band shows the uncertainty in the ratio due to uncertainties in $N_{part}$ calculations.

(Color Online) Variation of $N_{ch}$ normalized to the number of collisions in the FTPC coverage $(2.9 \leq \eta \leq 3.9)$ and $N_{\gamma}$ normalized to number of collisions, in the PMD coverage $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{coll}$. The lower band shows the uncertainty in the ratio due to uncertainties in $N_{coll}$ calculations.

More…

Measurement of inclusive antiprotons from Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 262302, 2001.
Inspire Record 564369 DOI 10.17182/hepdata.98922

We report the first measurement of inclusive antiproton production at mid-rapidity in Au+Au collisions at 130 GeV by the STAR experiment at RHIC. The antiproton transverse mass distributions in the measured transverse momentum range of 0.25 < pT < 0.95 GeV/c are found to fall less steeply for more central collisions. The extrapolated antiproton rapidity density is found to scale approximately with the negative hadron multiplicity density.

4 data tables

Tranverse mass distributions for different centralities

Antiproton fit parameters and yields. Systematic errors are 10%.

Antiproton fit parameters and yields. Systematic errors are 10%.

More…

Mid-rapidity anti-proton to proton ratio from Au + Au collisions at s(N N)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 86 (2001) 4778, 2001.
Inspire Record 555818 DOI 10.17182/hepdata.98921

We report results on the ratio of mid-rapidity anti-proton to proton yields in Au+Au collisions at $\rts = 130$ GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of $|y|<0.5$ and 0.4 $<p_t<$ 1.0 GeV/$c$, the ratio is essentially independent of either transverse momentum or rapidity, with an average of $0.65\pm 0.01_{\rm (stat.)} \pm 0.07_{\rm (syst.)}$ for minimum bias collisions. Within errors, no strong centrality dependence is observed. The results indicate that at this RHIC energy, although the $p$-$\pb$ pair production becomes important at mid-rapidity, a significant excess of baryons over anti-baryons is still present.

4 data tables

pbar over p ratio vs. pt

pbar over p ratio vs. rapidity (y)

pbar over p ratio vs. centrality $(n_{ch}/n_{max})$

More…

Kaon production and kaon to pion ratio in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Lett.B 595 (2004) 143-150, 2004.
Inspire Record 588342 DOI 10.17182/hepdata.98923

Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at $\snn$=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are $K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)}$ and $K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)}$ for the most central collisions. The $K^+/\pi^-$ ratio is lower than the same ratio observed at the SPS while the $K^-/\pi^-$ is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and $\bar{\rm p}$+p collision data at similar energies.

6 data tables

Transverse mass distributions for different centralities: dE/dx identified charged kaons. K+

Transverse mass distributions for different centralities: dE/dx identified charged kaons. K-

Transverse mass distributions for different centralities: Neutral Kaons.

More…

Strange anti-particle to particle ratios at mid-rapidity in s(NN)**(1/2) = 130-GeV Au + Au collisions.

The STAR collaboration Adams, John ; Adler, C. ; Ahammed, Z. ; et al.
Phys.Lett.B 567 (2003) 167-174, 2003.
Inspire Record 602867 DOI 10.17182/hepdata.98924

Values of the ratios in the mid-rapidity yields of anti-Lambda/Lambda = 0.71 +/- 0.01(stat.) +/- 0.04(sys.), anti-Xi+/Xi- = 0.83 +/- 0.04(stat.) +/- 0.05 (sys.), anti-Omega+/Omega- = 0.95 +/- 0.15(stat) +/- 0.05(sys.) and K+/K- 1.092 +/- 0.023(combined) were obtained in central sqrt(s_NN) = 130 GeV Au+Au collisions using the STAR detector. The ratios indicate that a fraction of the net-baryon number from the initial system is present in the excess of hyperons over anti-hyperons at mid-rapidity. The trend in the progression of the baryon ratios, with increasing strange quark content, is similar to that observed in heavy-ion collisions at lower energies. The value of these ratios may be related to the charged kaon ratio in the framework of simple quark-counting and thermal models.

5 data tables

Invariant mass distributions for $\Lambda$ and Anti-$\Lambda$

Invariant mass distributions for $\Xi$ and Anti-$\Xi$

Invariant mass distributions for $\Omega$ and Anti-$\Omega$

More…

Photon and neutral pion production in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 70 (2004) 044902, 2004.
Inspire Record 642374 DOI 10.17182/hepdata.98925

We report the first inclusive photon measurements about mid-rapidity (|y|<0.5) from Au+Au collisions at sqrt(s_{NN}) = 130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta(E)/E = 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum (pt) spectra of pi0 mesons about mid-rapidity (|y|<1) via the pi0 -> photon photon decay channel. The fractional contribution of the pi0 -> photon photon decay to the inclusive photon spectrum decreases by 20% +/- 5% between pt = 1.65 GeV/c and pt = 2.4 GeV/c in the most central events, indicating that relative to pi0 -> photon photon decay the contribution of other photon sources is substantially increasing.

9 data tables

Data for the electron-positron invariant mass plots

dE/dx deviant distributions of positive daughters

Data for the number of reconstructed photon conversions as a function of conversion location plots

More…

Centrality and pseudorapidity dependence of charged hadron production at intermediate p(T) in Au + Au collisions at s(NN)**(1/2) = 130-GeV

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 70 (2004) 044901, 2004.
Inspire Record 648464 DOI 10.17182/hepdata.98858

We present STAR measurements of charged hadron production as a function of centrality in Au + Au collisions at sqrt(s_NN) = 130 GeV. The measurements cover a phase space region of 0.2 < p_T < 6.0 GeV/c in transverse momentum and -1 < eta < 1 in pseudorapidity. Inclusive transverse momentum distributions of charged hadrons in the pseudorapidity region 0.5 < |eta| < 1 are reported and compared to our previously published results for |eta| < 0.5. No significant difference is seen for inclusive p_T distributions of charged hadrons in these two pseudorapidity bins. We measured dN/deta distributions and truncated mean p_T in a region of p_T > p_T^cut, and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured p_T region. The relative importance of hard scattering process is investigated through binary scaling fraction of particle production.

9 data tables

Ratio of the number of participants Npart or the number of binary collisions Nbin determined from different models to that from Monte Carlo Glauber calculation.

Ratio of the number of participants Npart or the number of binary collisions Nbin determined from different models to that from Monte Carlo Glauber calculation.

Inclusive $p_{T}$ distributions of ($h^{+}$ + $h^{-}$)/2 within 0.5 $<|\eta|< 1$. The combined statistical and systematic errors are shown.

More…

Proton-Proton Interactions and Onset of Deconfinement

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Anticic, T. ; et al.
Phys.Rev.C 102 (2020) 011901, 2020.
Inspire Record 1772241 DOI 10.17182/hepdata.95182

The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.

12 data tables

K+/PI+ at y=0.

K+/PI+ at y=0.

<K+>/<PI+>.

More…

Narrowing of the balance function with centrality in Au + Au collisions s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 90 (2003) 172301, 2003.
Inspire Record 612248 DOI 10.17182/hepdata.98620

The balance function is a new observable based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for charged particle pairs and identified charged pion pairs in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for peripheral collisions have widths consistent with model predictions based on a superposition of nucleon-nucleon scattering. Widths in central collisions are smaller, consistent with trends predicted by models incorporating late hadronization.

6 data tables

The balance function versus ∆η for charged particle pairs from a) central and peripheral Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV and mixed events from central and peripheral Au+Au collisions, and b) HIJING events filtered with GEANT [16] and shuffled pseudorapidity events from central and peripheral Au+Au collisions. To guide the eye, Gaussian fits excluding the lowest bin in ∆η are shown. The error bars shown are statistical. The balance function for HIJING events is independent of centrality.

The balance function versus ∆η for charged particle pairs from a) central and peripheral Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV and mixed events from central and peripheral Au+Au collisions, and b) HIJING events filtered with GEANT [16] and shuffled pseudorapidity events from central and peripheral Au+Au collisions. To guide the eye, Gaussian fits excluding the lowest bin in ∆η are shown. The error bars shown are statistical. The balance function for HIJING events is independent of centrality.

The width of the balance function for charged particles, $⟨\Delta \eta⟩$, as a function of normalized impact parameter $(b/b_{max})$. Error bars shown are statistical. The width of the balance function from HIJING events is shown as a band whose height reflects the statistical uncertainty. Also shown are the widths from the shuffled pseudorapidity events.

More…

Three-pion HBT correlations in relativistic heavy-ion collisions from the STAR experiment.

The STAR collaboration Adams, J. ; Adler, C. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 91 (2003) 262301, 2003.
Inspire Record 621641 DOI 10.17182/hepdata.97121

Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at $\sqrt{s_{NN}}=130$ GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freezeout. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.

4 data tables

Values for the three-pion correlation function using high multiplicity negative pions. Errors are statistical+systematic.

Three-pion correlator values (r3/2) for positive and negative pions in central and mid-central events. Errors are statistical+systematic.

Three-pion correlator intercept values (r3(0)/2) for positive and negative pions in central and mid-central events compared with other experiments. Errors are statistical+systematic.

More…

Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}}=7.7$ to 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024901, 2016.
Inspire Record 1394433 DOI 10.17182/hepdata.96601

Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.

28 data tables

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV

More…

Suppression of away-side jet fragments with respect to the reaction plane in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 024904, 2011.
Inspire Record 872172 DOI 10.17182/hepdata.96510

Pair correlations between large transverse momentum neutral pion triggers (p_T=4--7 GeV/c) and charged hadron partners (p_T=3--7 GeV/c) in central (0--20%) and midcentral (20--60%) Au+Au collisions are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot dense matter. An out-of-plane trigger particle produces only 26+/-20% of the away-side pairs that are observed opposite of an in-plane trigger particle. In contrast, near-side jet fragments are consistent with no suppression or dependence on trigger orientation with respect to the reaction plane. These observations are qualitatively consistent with a picture of little near-side parton energy loss either due to surface bias or fluctuations and increased away-side parton energy loss due to a long path through the medium. The away-side suppression as a function of reaction-plane angle is shown to be sensitive to both the energy loss mechanism in and the space-time evolution of heavy-ion collisions.

22 data tables

Delta phi / Correlation Function 3-4 GeV/c partners

Delta phi / Correlation Function 3-4 GeV/c partners

$p^{a}_{T} = 3-4$ GeV/$c$

More…

Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 111 (2013) 032301, 2013.
Inspire Record 1207323 DOI 10.17182/hepdata.95877

The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.

5 data tables

Direct photon-hadron pair per-trigger yields vs Delta-phi (Au+Au and p+p)

Integrated per-trigger yields and I_AA vs xi

Integrated per-trigger yields and I_AA vs xi

More…

Pion interferometry of s(NN)**(1/2) = 130-GeV Au + Au collisions at RHIC.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 082301, 2001.
Inspire Record 559861 DOI 10.17182/hepdata.93264

Two-pion correlation functions in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV have been measured by the STAR (Solenoidal Tracker at RHIC) detector. The source size extracted by fitting the correlations grows with event multiplicity and decreases with transverse momentum. Anomalously large sizes or emission durations, which have been suggested as signals of quark-gluon plasma formation and rehadronization, are not observed. The HBT parameters display a weak energy dependence over a broad range in $\sqrt{s_{NN}}$.

5 data tables

Multiplicity dependence of HBT parameters for low-pT (0.125-0.225 GeV/c) pi- pi- channel. They are Coulomb corrected (5 fm Gaussian source assumed), corrected for merging effects ("bad systematic" for STAR-HBT insiders), and corrected for finite-momentum-resolution effects. Systematic errors are estimated by the size of the merging correction and the effect of varying source size used in the Coulomb correction by +/- 1 fm.

Multiplicity dependence of HBT parameters for low-pT (0.125-0.225 GeV/c) pi+ pi+ channel. They are Coulomb corrected (5 fm Gaussian source assumed), corrected for merging effects ("bad systematic" for STAR-HBT insiders), and corrected for finite-momentum-resolution effects. Systematic errors are estimated by the size of the merging correction and the effect of varying source size used in the Coulomb correction by +/- 1 fm.

mT dependence of HBT parameters for high multiplicity (0-12%) collisions in pi- pi- channel. They are Coulomb corrected (5 fm Gaussian source assumed), corrected for merging effects ("bad systematic" for STAR-HBT insiders), and corrected for finite-momentum-resolution effects. Systematic errors are estimated by the size of the merging correction and the effect of varying source size used in the Coulomb correction by +/- 1 fm.

More…

Identified particle elliptic flow in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 182301, 2001.
Inspire Record 559609 DOI 10.17182/hepdata.93261

We report first results on elliptic flow of identified particles at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.

5 data tables

Differential elliptic flow for pions for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.

Differential elliptic flow for protons + antiprotons for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.

Differential elliptic flow for kaons for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.

More…

Elliptic flow in Au + Au collisions at s(N N)**(1/2) = 130-GeV.

The STAR collaboration Ackermann, K.H. ; Adams, N. ; Adler, C. ; et al.
Phys.Rev.Lett. 86 (2001) 402-407, 2001.
Inspire Record 533414 DOI 10.17182/hepdata.93232

Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.

2 data tables

Elliptic flow as a function of centrality defined as nch/nmax. Also given is epsilon, the initial space eccentricity of the overlap region, as well as the cumulative fraction of events starting with the most central. From the results of the study of non-flow contributions by different subevent selections and the maximum magnitudes of the first and higher-order harmonics, we estimate a systematic error for v2 of about 0.007, with somewhat smaller uncertainty for the mid-centralities where the resolution of the event plane is high.

Elliptic flow as a function of transverse momen-tum for minimum bias events


System size and energy dependence of near-side di-hadron correlations

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014903, 2012.
Inspire Record 943192 DOI 10.17182/hepdata.77720

Two-particle azimuthal ($\Delta\phi$) and pseudorapidity ($\Delta\eta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both $\Delta\phi$ and $\Delta\eta$, and the ridge, narrow in $\Delta\phi$ but broad in $\Delta\eta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV, but is found to be substantially smaller at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV than at $\sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ \langle N_{\mathrm{part}}\rangle$). Measurements of the ridge are compared to models.

40 data tables

Parameterizations of the transverse momentum dependence of the reconstruction efficiency of charged particles in the TPC in various collision systems, energies and centrality bins for the track selection cuts used in this analysis.

The raw correlation in $\Delta\eta$ for di-hadron correlations for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-12% central \Au collisions for $|\Delta\phi|<$ 0.78 before and after the track merging correction is applied. The data have been reflected about $\Delta\eta$=0.

Sample correlations in $\Delta\eta$ ($|\Delta\phi|<$ 0.78) for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-80% Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-95% $d$+Au at $\sqrt{s_{NN}}$ = 200 GeV, 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV, 40-80% Au+Au at $\sqrt{s_{NN}}$ = 200 GeV, and 0-12% central Au+Au at $\sqrt{s_{NN}}$ = 200 GeV. The data are averaged between positive and negative $\Delta\eta$. 5% systematic uncertainty due to track reconstruction efficiency not listed below.

More…

Scaling violations of quark and gluon jet fragmentation functions in e+ e- annihilations at s**(1/2) = 91.2-GeV and 183-GeV - 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 37 (2004) 25-47, 2004.
Inspire Record 648738 DOI 10.17182/hepdata.74689

Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are measured in e+e- annihilations from data collected at centre-of-mass energies of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are defined by hemispheres of inclusive hadronic events, while the biased jet measurements are based on three-jet events selected with jet algorithms. Several methods are employed to extract the fragmentation functions over a wide range of scales. Possible biases are studied in the results are obtained. The fragmentation functions are compared to results from lower energy e+e- experiments and with earlier LEP measurements and are found to be consistent. Scaling violations are observed and are found to be stronger for the fragmentation functions of gluon jets than for those of quarks. The measured fragmentation functions are compared to three recent theoretical next-to-leading order calculations and to the predictions of three Monte Carlo event generators. While the Monte Carlo models are in good agreement with the data, the theoretical predictions fail to describe the full set of results, in particular the b and gluon jet measurements.

11 data tables

The udsc jet fragmentation function in bins of $x_{\rm E}$ and scale. The scale denotes $Q_{\rm jet}$ for the biased jets and is given by the intervals, while it denotes $\sqrt{s}/2$ for the unbiased jets and is given by the single values. These data are displayed in Fig.7.

The b jet fragmentation function in bins of $x_{\rm E}$ and scale. The scale denotes $Q_{\rm jet}$ for the biased jets and is given by the intervals, while it denotes $\sqrt{s}/2$ for the unbiased jets and is given by the single values. These data are displayed in Fig. 8. In the region 0.48 $<x_{\rm E}<$ 0.90 and $Q_{\rm jet}=$ 30-70 GeV, no measurement was possible due to low statistics.

The gluon jet fragmentation functions in bins of $x_{\rm E}$ and scale $Q_{\rm jet}$ obtained from the biased jets using the b-tag method (BT). These data are displayed in Fig. 9. In the region 0.48 $<x_{\rm E}<$ 0.90 and $Q_{\rm jet}=$ 30-42 GeV for the b-tag method, no measurement was possible due to low statistics.

More…

Exclusive electroproduction of J/psi mesons at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Nucl.Phys.B 695 (2004) 3-37, 2004.
Inspire Record 647777 DOI 10.17182/hepdata.46277

The exclusive electroproduction of J/psi mesons, ep->epJ/psi, has been studied with the ZEUS detector at HERA for virtualities of the exchanged photon in the ranges 0.15<Q^2<0.8 GeV^2 and 2<Q^2<100 GeV^2 using integrated luminosities of 69 pb^-1 and 83 pb^-1, respectively.The photon-proton centre-of-mass energy was in the range 30<W<220 GeV and the squared four-momentum transfer at the proton vertex |t|<1.The cross sections and decay angular distributions are presented as functions of Q^2, W and t. The effective parameters of the Pomeron trajectory are in agreement with those found in J/psi photoproduction. The spin-density matrix elements, calculated from the decay angular distributions, are consistent with the hypothesis of s-channel helicity conservation. The ratio of the longitudinal to transverse cross sections, sigma_L/sigma_T, grows with Q^2, whilst no dependence on W or t is observed. The results are in agreement with perturbative QCD calculations and exhibit a strong sensitivity to the gluon distribution in the proton.

20 data tables

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 0.15 to 0.18 GeV**2.

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 2 to 5 GeV**2.

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 5 to 10 GeV**2.

More…

Energy Dependence of $K/\pi$, $p/\pi$, and $K/p$ Fluctuations in Au+Au Collisions from $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV

The STAR collaboration Abdelwahab, N.M. ; Adamczyk, L. ; Adkins, J.K. ; et al.
Phys.Rev.C 92 (2015) 021901, 2015.
Inspire Record 1322965 DOI 10.17182/hepdata.72254

A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K\pi$, $p\pi$, and $Kp$ fluctuations as measured by the STAR experiment in central 0-5\% Au+Au collisions from center-of-mass collision energies $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\rm \nu_{dyn}$ was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the $K\pi$, $p\pi$, and $Kp$ pairs. The energy dependences of these fluctuations from central 0-5\% Au+Au collisions all demonstrate a smooth evolution with collision energy.

1 data table

$p\pi$, Kp, and $K\pi$ fluctuations as a function of collision energy, expressed as $v_{dyn,p\pi}$, $v_{dyn,Kp}$, and $v_{dyn,K\pi}$ respectively. Shown are data from central (0-5%) Au+Au collisions at energies from $\sqrt{s_{\rm NN}}$ = 7.7 to 200 GeV from the STAR experiment.


Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 750 (2015) 64-71, 2015.
Inspire Record 1340691 DOI 10.17182/hepdata.72236

The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity $|y_{ee}|<1$ in minimum-bias Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened $\rho$ spectral function for $M_{ee}<1.1$ GeV/$c^{2}$. The integrated dielectron excess yield at $\sqrt{s_{NN}}$ = 19.6 GeV for $0.4<M_{ee}<0.75$ GeV/$c^2$, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at $\sqrt{s_{NN}}$ = 17.3 GeV. For $\sqrt{s_{NN}}$ = 200 GeV, the normalized excess yield in central collisions is higher than that at $\sqrt{s_{NN}}$ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is longer than those in peripheral collisions and at lower energies.

6 data tables

Reconstructed dielectron unlike-sign pairs, like-sign pairs and signal distributions, together with the signal to background ratio (S/B). All columns are presented as a function of dielectron invariant mass in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Dielectron invariant mass spectrum in the STAR acceptance (|$y_{ee}$| < 1, 0.2 < $p_T^e$ < 3 GeV/c, |$\eta^e$ | < 1) after efficiency correction in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Hadronic cocktail consisting of the decays of light hadrons and correlated decays of charm in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

More…

Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 112302, 2016.
Inspire Record 1414638 DOI 10.17182/hepdata.72069

We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.

81 data tables

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

More…