PHASE SHIFT ANALYSIS OF THE p p AMPLITUDES IN THE ENERGY RANGE 380-MeV TO 1000-MeV

Shklyarevsky, G.M. ;
Sov.J.Nucl.Phys. 47 (1988) 76-82, 1988.
Inspire Record 231081 DOI 10.17182/hepdata.17359
2 data tables

THE PHASES IN THIS TABLE WERE FIXED AT INITIAL STAGE OF PWA.

No description provided.


K0(L) p ---> K0(S) p SCATTERING FROM 1-GeV/c TO 10-GeV/c

Brandenburg, G.W. ; Johnson, William B. ; Leith, David W.G.S. ; et al.
Phys.Rev.D 9 (1974) 1939, 1974.
Inspire Record 81133 DOI 10.17182/hepdata.21986

The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.

22 data tables

No description provided.

No description provided.

No description provided.

More…

K0(L) p --> K0(s) p Scattering in the 1.5-GeV-2.3-GeV Energy Region

Alexander, G. ; Bar-Nir, I. ; Benary, O. ; et al.
Phys.Lett.B 58 (1975) 484-488, 1975.
Inspire Record 2246 DOI 10.17182/hepdata.27761

The K L o p → K S o p differential and total cross-section and the forward scattering amplitude phase φ have been measured in the 1.5 to 2.3 GeV centre of mass energy range. The data is compared with predictions based on recent K ± N phase shift solutions. Best agreement is found for K + N solutions which do not warrant an I=0 P 1 2 exotic Z ∗ o (1800) baryon.

2 data tables

No description provided.

No description provided.