Study of the Reactions $\pi^- p \to K^0 \Sigma^0(1385)$ and $\pi^- p \to K^+ \Sigma^-(1385)$ at 3.95-{GeV}/$c$

The CERN-College de France-Madrid-Stockholm collaboration Aguilar-Benitez, M. ; Albajar, M.C. ; Ferrando, A. ; et al.
Z.Phys.C 6 (1980) 109-123, 1980.
Inspire Record 153921 DOI 10.17182/hepdata.14369

The reactionsπ−p→K0∑0(1385) andπ−p→K+∑−(1385) are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to approximately 90 events/μb. The total and differential cross sections and the density matrix elements of the Σ(1385) are presented. The results are compared with those obtained for the related processesπpp→K+∑+(1385) and\(K^ -p \to \pi ^ \mp\sum ^ \pm(1385)\) in this energy range. Evidence is presented for the existence of production mechanisms with exotic exchanges in thet channel.

16 data tables

FROM THE CHANNEL PI- P --> LAMBDA K0 PI0 WHICH HAS A CROSS SECTION OF 72 +- 4 MUB.

FROM THE CHANNEL PI- P --> LAMBDA K+ PI- WHICH HAS A CROSS SECTION OF 79 +- 3 MUB.

FORWARD CROSS SECTION.

More…

Study of the Reactions $\pi^- p \to K^0(890)\Lambda$, $K^0(890) \Sigma^0$ and $K^0(890) \Sigma^0(1385)$ at 3.95-{GeV}/$c$

The CERN-College de France-Madrid-Stockholm collaboration Aguilar-Benitez, M. ; Albajar, M.C. ; Ferrando, A. ; et al.
Z.Phys.C 6 (1980) 195-215, 1980.
Inspire Record 153917 DOI 10.17182/hepdata.1428

The reactionsπ−p→K0(890) Λ,K0(890)Σ0 andK0(890)Σ0 are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to ∼90 events/μb. The differential cross sections, density matrix elements of the vector meson and hyperon polarizations are presented. A transversity amplitude analysis is performed for each of the reactions. The results are compared with those obtained for the SU(3) related processesK−p→ϕΔ, ϕΣ0, ϕΣ0(1385) andϱ−Σ+(1385) and with predictions of the additive quark model and SU(6) sum rules.

39 data tables

BREIT-WIGNER FIT WITH BACKGROUND POLYNOMIAL.

BACKWARD CROSS SECTION.

TOTAL CROSS SECTION USING SLICING TECHNIQUE. FORWARD (-TP < 1.2 GEV**2) CROSS SECTION IS 25 +- 2 MUB: DOUBLE MASS CUT GIVES 20 +- 7 PCT BACKGROUND CONTAMINATION.

More…

Observation of k(l) - k(s) regeneration from liquid hydrogen. aachen-cern-turin collaboration,

Darriulat, P. ; Grosso, C. ; Holder, M. ; et al.
Phys.Lett.B 33 (1970) 433-437, 1970.
Inspire Record 69387 DOI 10.17182/hepdata.28718

The K L K S transmission regeneration of a K L beam traversing a liquid hydrogen target has been observed over the momentum interval 3.0–6.0 GeV/ c . Results are in good agreement with predictions based on dispersion relations.

2 data tables

Regeneration amplitude.

No description provided.


Experimental Confirmation of the 1100 Structure and First Observation of the Leptonic Decay of the $\rho^\prime$ (1250)

Bartalucci, S. ; Basini, G. ; Bertolucci, S. ; et al.
Nuovo Cim.A 49 (1979) 207, 1979.
Inspire Record 131639 DOI 10.17182/hepdata.37533

We have extended our survey of the reaction γ+p→p+e++e− by collecting 20 000 additional e+e− pairs in the invariant-mass region 900<m<1500 MeV. The measured interference pattern shows two enhancements at mass values of 1097 and 1266 MeV. The parameters of those structure, when interpreted as vector mesons in the VDM framework, are given.

1 data table

No description provided.


K0(L) p ---> K0(S) p SCATTERING FROM 1-GeV/c TO 10-GeV/c

Brandenburg, G.W. ; Johnson, William B. ; Leith, David W.G.S. ; et al.
Phys.Rev.D 9 (1974) 1939, 1974.
Inspire Record 81133 DOI 10.17182/hepdata.21986

The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.

22 data tables

No description provided.

No description provided.

No description provided.

More…

Amplitude Analysis for the Process K- p --> (pi+ pi-) S-Wave Sigma0 (1385)

The Amsterdam-CERN-Nijmegen-Oxford collaboration Barreiro, F. ; Zalewski, K. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 66 (1977) 197-201, 1977.
Inspire Record 110387 DOI 10.17182/hepdata.27588

Transversity amplitudes and spin density matrix elements are determined for the process K − p → (π + π − ) s-wave ϵ 0 (1385). Predictions of the additive quark model and of duality diagrams are tested and found consistent with the data; this is the first information about the applicability of these models to processes where a scalar object is produced at the mesonic vertex.

1 data table

No description provided.


Coherent K0(S) Regeneration in Hydrogen and Deuterium from 3.5-GeV/c to 10.5-GeV/c

Freytag, D. ; Schultz, C. ; Patel, P. ; et al.
Phys.Rev.Lett. 35 (1975) 412-416, 1975.
Inspire Record 103337 DOI 10.17182/hepdata.21146

The amplitude and phase for coherent regeneration in hydrogen and deuterium have been measured for six momentum bins in the range 3.5-10.5 GeV/c. Over this region the phase, ϕf, is consistent with being constant and has the value - 60°±8° for hydrogen and - 46°±8° for deuterium. Power-law fits of the form plabn for the amplitudes when combined with other data give n=−0.60±0.02 for hydrogen and n=−0.52±0.02 for deuterium.

2 data tables

No description provided.

NOTE PHASE IS HERE DEFINED AS THE PHASE OF I*AMP(NAME=REGEN) AND SO DIFFERS BY 90 DEG FROM USUAL DEFINITION.