Precise determination of the spin structure function g(1) of the proton, deuteron and neutron.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Phys.Rev.D 75 (2007) 012007, 2007.
Inspire Record 726689 DOI 10.17182/hepdata.11211

Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 \leq x \leq 0.9$ and $0.18 $ GeV$^2$ $\leq Q^2 \leq 20$ GeV$^2$. The data were collected at the HERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x \leq 0.021$, a value of $0.330 \pm 0.011\mathrm{(theo.)}\pm0.025\mathrm{(exp.)}\pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.

23 data tables

Integrals of G1 for P, DEUT and N targets.. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2.

Integrals of G1 for the Non-Singlet contributions.. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2. Axis error includes +- 5.2/5.2 contribution.

Integrals of G1 over different X ranges for P target at various Q*2 values. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2. Axis error includes +- 5.2/5.2 contribution.

More…

Multiplicity of charged and neutral pions in deep-inelastic scattering of 27.5-GeV positrons on hydrogen.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J.C 21 (2001) 599-606, 2001.
Inspire Record 554660 DOI 10.17182/hepdata.46860

Measurements of the individual multiplicities of pi+, pi- and pi0 produced in the deep-inelastic scattering of 27.5 GeV positrons on hydrogen are presented. The average charged pion multiplicity is the same as for neutral pions, up to approximately z= 0.7, where z is the fraction of the energy transferred in the scattering process carried by the pion. This result (below z= 0.7) is consistent with isospin invariance. The total energy fraction associated with charged and neutral pions is 0.51 +/- 0.01 (stat.) +/- 0.08 (syst.) and 0.26 +/- 0.01 (stat.) +/- 0.04 (syst.), respectively. For fixed z, the measured multiplicities depend on both the negative squared four momentum transfer Q^2 and the Bjorken variable x. The observed dependence on Q^2 agrees qualitatively with the expected behaviour based on NLO-QCD evolution, while the dependence on x is consistent with that of previous data after corrections have been made for the expected Q^2-dependence.

4 data tables

The measured PI0 multiplicity. Additional 9 PCT systematic error.

The measured multiplicity for charged pions, individually and the average. Additional 7 PCT systematic error.

The charged pion multiplicity as a function of x for four different z regions.

More…

The Q**2-dependence of the generalised Gerasimov-Drell-Hearn integral for the proton.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akushevich, I. ; et al.
Phys.Lett.B 494 (2000) 1-8, 2000.
Inspire Record 531949 DOI 10.17182/hepdata.46913

The dependence on Q^2 (the negative square of the 4-momentum of the exchanged virtual photon) of the generalised Gerasimov-Drell-Hearn integral for the proton has been measured in the range 1.2 GeV^2 < Q^2 < 12 GeV^2 by scattering longitudinally polarised positrons on a longitudinally polarised hydrogen gas target. The contributions of the nucleon-resonance and deep-inelastic regions to this integral have been evaluated separately. The latter has been found to dominate for Q^2 > 3 GeV^2, while both contributions are important at low Q^2. The total integral shows no significant deviation from a 1/Q^2 behaviour in the measured Q^2 range, and thus no sign of large effects due to either nucleon-resonance excitations or non-leading twist.

1 data table

The GDH integral as a function of Q2 in the resonance region (W**2 = 1 to 4.2 GeV**2), the measured region (W**2=4.2 to 45 GeV**2), and the total region (W**2= 1 to 45 GeV**2).


Measurement of the spin asymmetry in the photoproduction of pairs of high p(T) hadrons at HERMES.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Amarian, M. ; et al.
Phys.Rev.Lett. 84 (2000) 2584-2588, 2000.
Inspire Record 503784 DOI 10.17182/hepdata.43919

We present a measurement of the longitudinal spin asymmetry A_|| in photoproduction of pairs of hadrons with high transverse momentum p_T. Data were accumulated by the HERMES experiment using a 27.5 GeV polarized positron beam and a polarized hydrogen target internal to the HERA storage ring. For h+h- pairs with p_T^h_1 > 1.5 GeV/c and p_T^h_2 > 1.0 GeV/c, the measured asymmetry is A_|| = -0.28 +/- 0.12 (stat.) +/- 0.02 (syst.). This negative value is in contrast to the positive asymmetries typically measured in deep inelastic scattering from protons, and is interpreted to arise from a positive gluon polarization.

1 data table

Asymmetry measurement with a PT cut of 1.5 GeV on the hadron with the higher PT, and 1.0 GeV on the hadron with the lower PT.


Determination of the deep inelastic contribution to the generalised Gerasimov-Drell-Hearn integral for the proton and neutron.

The HERMES collaboration Ackerstaff, K. ; Airapetian, A. ; Akopov, N. ; et al.
Phys.Lett.B 444 (1998) 531-538, 1998.
Inspire Record 476388 DOI 10.17182/hepdata.44128

The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.

13 data tables

Gerasimov-Drell-Hearn sum rule for proton as a function of Q2.

Gerasimov-Drell-Hearn sum rule for neutron as a function of Q2 (integral spans from Q2/2M to infinity instead of zero to infinity, see paper).

Cross section difference for the proton data. Statistical errors only.

More…