Scaling violations of quark and gluon jet fragmentation functions in e+ e- annihilations at s**(1/2) = 91.2-GeV and 183-GeV - 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 37 (2004) 25-47, 2004.
Inspire Record 648738 DOI 10.17182/hepdata.74689

Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are measured in e+e- annihilations from data collected at centre-of-mass energies of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are defined by hemispheres of inclusive hadronic events, while the biased jet measurements are based on three-jet events selected with jet algorithms. Several methods are employed to extract the fragmentation functions over a wide range of scales. Possible biases are studied in the results are obtained. The fragmentation functions are compared to results from lower energy e+e- experiments and with earlier LEP measurements and are found to be consistent. Scaling violations are observed and are found to be stronger for the fragmentation functions of gluon jets than for those of quarks. The measured fragmentation functions are compared to three recent theoretical next-to-leading order calculations and to the predictions of three Monte Carlo event generators. While the Monte Carlo models are in good agreement with the data, the theoretical predictions fail to describe the full set of results, in particular the b and gluon jet measurements.

11 data tables

The udsc jet fragmentation function in bins of $x_{\rm E}$ and scale. The scale denotes $Q_{\rm jet}$ for the biased jets and is given by the intervals, while it denotes $\sqrt{s}/2$ for the unbiased jets and is given by the single values. These data are displayed in Fig.7.

The b jet fragmentation function in bins of $x_{\rm E}$ and scale. The scale denotes $Q_{\rm jet}$ for the biased jets and is given by the intervals, while it denotes $\sqrt{s}/2$ for the unbiased jets and is given by the single values. These data are displayed in Fig. 8. In the region 0.48 $<x_{\rm E}<$ 0.90 and $Q_{\rm jet}=$ 30-70 GeV, no measurement was possible due to low statistics.

The gluon jet fragmentation functions in bins of $x_{\rm E}$ and scale $Q_{\rm jet}$ obtained from the biased jets using the b-tag method (BT). These data are displayed in Fig. 9. In the region 0.48 $<x_{\rm E}<$ 0.90 and $Q_{\rm jet}=$ 30-42 GeV for the b-tag method, no measurement was possible due to low statistics.

More…

A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 29 (2003) 285-312, 2003.
Inspire Record 620250 DOI 10.17182/hepdata.13029

Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.

71 data tables

1-THRUST distribution.

THRUST-MAJOR distribution.

THRUST-MINOR distribution.

More…

Measurement of three jet distributions sensitive to the gluon spin in e+ e- annihilations at S**(1/2) = 91-GeV

The OPAL collaboration Alexander, G. ; Allison, John ; Allport, P.P. ; et al.
Z.Phys.C 52 (1991) 543-550, 1991.
Inspire Record 317142 DOI 10.17182/hepdata.14852

None

4 data tables

Data at Parton level.

Ratio data/(Monte Carlo) at Parton level.

Data at Parton level.. Distribution of Ellis-Karliner angle.

More…

Study of Hadronic Decays of the $\Z^0$ Boson

The DELPHI collaboration Aarnio, P. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 240 (1990) 271-282, 1990.
Inspire Record 294894 DOI 10.17182/hepdata.49562

Hadronic decays of Z 0 bosons are studied in the Delphi detector. Global event variables and singel particles inclusive distributions are compared with QCD-based predictions. The mean charged multiplicity is found to be 20.6±1.0 (stat+syst). The mean values of the sphericity, aplanarity, thrust, minor value, p in T and p out T are compared with values found at lower energy e + e − colliders.

13 data tables

Corrected Sphericity distribution. Statistical errors only.

Corrected Aplanarity distribution. Statistical errors only.

Corrected Q3-Q2 distribution. Statistical errors only.

More…