Production of D*(2010)+ mesons by high energy neutrinos from the Tevatron.

The E632 collaboration Asratian, A.E. ; Aderholz, M. ; Ammosov, V.V. ; et al.
Z.Phys.C 76 (1997) 647-652, 1997.
Inspire Record 447761 DOI 10.17182/hepdata.47482

Charged vector D*+(2010) meson production is studied in a high energy neutrino bubble chamber experiment with mean neutrino energy of 141 GeV. The D*+ are produced in (5.6±1.8)% of the neutrino charged current interactions, indicating a steep increase of cross section with energy. The mean fractional hadronic energy of the D*+ meson is 0.55 ± 0.06.

1 data table

No description provided.


Coherent production of single pions and rho mesons in charged current interactions of neutrinos and anti-neutrinos on neon nuclei at the Fermilab tevatron

The E632 collaboration Willocq, S. ; Aderholz, M. ; Akbari, H. ; et al.
Phys.Rev.D 47 (1993) 2661-2674, 1993.
Inspire Record 334930 DOI 10.17182/hepdata.22725

The coherent production of π and ρ mesons in νμ (ν¯μ)-neon charged-current interactions has been studied using the Fermilab 15-foot bubble chamber filled with a heavy Ne-H2 mix and exposed to the Tevatron quadrupole triplet (anti)neutrino beam. The νμ (ν¯μ) beam had an average energy of 80 GeV (70 GeV). From a sample corresponding to approximately 28 000 charged-current interactions, net signals of (53±9) μ±π∓ coherent events and (19±7) μ±π∓π0 coherent events are extracted. For E>10 GeV, the coherent pion production cross section is determined to be (3.2±0.7)×10−38 cm2 per neon nucleus whereas the coherent ρ production cross section is (2.1±0.8)×10−38 cm2 per neon nucleus. These cross sections and the kinematical characteristics of the coherent events at |t|<0.1 GeV2 are found to be in general agreement with the predictions of a model based on the hadron dominance and, in the pion case, on the partially conserved axial-vector current hypothesis. Also discussed is the coherent production of systems consisting of three pions.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Dimuon Production by Neutrinos in the {Fermilab} 15-ft. Bubble Chamber at the Tevatron

The E632 collaboration Jain, V. ; Harris, F.A. ; Aderholz, M. ; et al.
Phys.Rev.D 41 (1990) 2057, 1990.
Inspire Record 281906 DOI 10.17182/hepdata.22938

The Fermilab 15-ft bubble chamber has been exposed to a quadrupole triplet neutrino beam produced at the Tevatron. The ratio of ν to ν¯ in the beam is approximately 2.5. The mean event energy for ν-induced charged-current events is 150 GeV, and for ν¯-induced charged-current events it is 110 GeV. A total of 64 dimuon candidates (1 μ+μ+, 52 μ−μ+ and μ+μ−, and 11 μ−μ−) is observed in the data sample of approximately 13 300 charged-current events. The number and properties of the μ−μ− and μ+μ+ candidates are consistent with their being produced by background processes, the important sources being π and K decay and punchthrough. The 90%-C.L. upper limit for μ−μ−/μ− for muon momenta above 4 GeV/c is 1.2×10−3, and for momenta above 9 GeV/c this limit is 1.1×10−3. The opposite-sign-dimuon–to–single-muon ratio is (0.62±0.13)% for muon momenta above 4 GeV/c. There are eight neutral strange particles in the opposite-sign sample, leading to a rate per dimuon event of 0.65±0.29. The opposite-sign-dimuon sample is consistent with the hypothesis of charm production and decay.

4 data tables

No description provided.

No description provided.

No description provided.

More…