Version 2
Production of D*+- mesons with dijets in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 51 (2007) 271-287, 2007.
Inspire Record 736052 DOI 10.17182/hepdata.45686

Inclusive D* production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D* meson is investigated. The analysis covers values of photon virtuality 2< Q^2 <=100 GeV^2 and of inelasticity 0.05<= y <= 0.7. Differential cross sections are measured as a function of Q^2 and x and of various D* meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k_T-unintegrated gluon distribution of the proton.

62 data tables

Visible cross section for inclusive D*+- production.

Visible cross section for inclusive D*+- production.

Visible cross section for inclusive D*+- production with two jets.

More…

Inclusive Measurements of Inelastic Electron and Positron Scattering from Unpolarized Hydrogen and Deuterium Targets

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
JHEP 05 (2011) 126, 2011.
Inspire Record 894309 DOI 10.17182/hepdata.66147

Results of inclusive measurements of inelastic electron and positron scattering from unpolarized protons and deuterons at the HERMES experiment are presented. The structure functions $F_2^p$ and $F_2^d$ are determined using a parameterization of existing data for the longitudinal-to-transverse virtual-photon absorption cross-section ratio. The HERMES results provide data in the ranges $0.006\leq x\leq 0.9$ and 0.1 GeV$^2\leq Q^2\leq$ 20 GeV$^2$, covering the transition region between the perturbative and the non-perturbative regimes of QCD in a so-far largely unexplored kinematic region. They are in agreement with existing world data in the region of overlap. The measured cross sections are used, in combination with data from other experiments, to perform fits to the photon-nucleon cross section using the functional form of the ALLM model. The deuteron-to-proton cross-section ratio is also determined.

3 data tables

Results on the differential Born cross section $\frac{d^2\sigma^p}{dx\,dQ^2}$ and $F_2^p$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies) are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle {Q^2} \rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.6 %. The structure function $F_2^p$ is derived using the parameterization $R=R_{1998}$.

Results on the differential Born cross section $\frac{d^2\sigma^d}{dx\,dQ^2}$ and $F_2^d$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies), are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle{Q^2}\rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.5 %. The structure function $F_2^d$ is derived using the parameterization $R=R_{1998}$.

Results on the inelastic Born cross-section ratio ${\sigma^d}/{\sigma^p}$. The statistical uncertainty $\delta_{stat.}$, the systematic uncertainty $\delta_{rad.}$ due to radiative corrections and $\delta_{model}$ due to the model dependence outside the acceptance are given in percent. The average values of $x$ and $Q^2$ are listed in the first two columns. The overall normalization uncertainty is 1.4$\%$.


Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 09 (2014) 127, 2014.
Inspire Record 1298276 DOI 10.17182/hepdata.64204

The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q^2 < 1000 GeV^2 using an integrated luminosity of 354 pb^{-1}. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q^2, Bjorken x, jet transverse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q^2. The running beauty-quark mass, m_b at the scale m_b, was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be 4.07 \pm 0.14 (fit} ^{+0.01}_{-0.07} (mod.) ^{+0.05}_{-0.00} (param.) ^{+0.08}_{-0.05} (theo) GeV.

28 data tables

Differential cross sections for inclusive jet production in beauty events as a function of ET(JET) for ET(JET) > 5 GeV. The measurements are given together with their statistical and systematic uncertainties. Hadronisation and QED radiative corrections, CHAD and CRAD, respectively, are also shown.

Differential cross sections for inclusive jet production in charm events as a function of ET(JET) for ET(JET) > 4.2 GeV. The measurements are given together with their statistical and systematic uncertainties. Hadronisation and QED radiative corrections, CHAD and CRAD, respectively, are also shown.

Differential cross sections for inclusive jet production in beauty events as a function of ETARAP(JET) for -1.6 < ETARAP(JET) < 2.2. The measurements are given together with their statistical and systematic uncertainties. Hadronisation and QED radiative corrections, CHAD and CRAD, respectively, are also shown.

More…

Multijet production at low x(Bj) in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 786 (2007) 152-180, 2007.
Inspire Record 750515 DOI 10.17182/hepdata.45528

Inclusive dijet and trijet production in deep inelastic $ep$ scattering has been measured for $10&lt;Q^2&lt;100$ GeV$^2$ and low Bjorken $x$, $10^{-4}&lt;x_{\rm Bj}&lt;10^{-2}$. The data were taken at the HERA $ep$ collider with centre-of-mass energy $\sqrt{s} = 318 \gev$ using the ZEUS detector and correspond to an integrated luminosity of $82 {\rm pb}^{-1}$. Jets were identified in the hadronic centre-of-mass (HCM) frame using the $k_{T}$ cluster algorithm in the longitudinally invariant inclusive mode. Measurements of dijet and trijet differential cross sections are presented as functions of $Q^2$, $x_{\rm Bj}$, jet transverse energy, and jet pseudorapidity. As a further examination of low-$x_{\rm Bj}$ dynamics, multi-differential cross sections as functions of the jet correlations in transverse momenta, azimuthal angles, and pseudorapidity are also presented. Calculations at $\mathcal{O}(\alpha_{s}^3)$ generally describe the trijet data well and improve the description of the dijet data compared to the calculation at $\mathcal{O}(\alpha_{s}^2)$.

66 data tables

Two jet cross section D(SIG)/DQ**2 as a function of Q**2.

Two jet cross section D(SIG)/DX as a function of X.

Two jet cross section D(SIG)/DET(P=4,RF=CM) as a function of ET(P=4,RF=CM).

More…

Measurement of neutral current cross sections at high Bjorken-x with the ZEUS detector at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 49 (2007) 523-544, 2007.
Inspire Record 723329 DOI 10.17182/hepdata.11718

A new method is employed to measure the neutral current cross section up to Bjorken-x values of one with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb-1 for e+p collisions and 16.7 pb-1 for e-p collisions at sqrt{s}=318 GeV and 38.6 pb-1 for e+p collisions at sqrt{s}=300 GeV. Cross sections have been extracted for Q2 >= 648 GeV2 and are compared to predictions using different parton density functions. For the highest x bins, the data have a tendency to lie above the expectations using recent parton density function parametrizations.

114 data tables

The double differential cross section for the 96-97 E+ P NC scattering data.

The double differential cross section for the 96-97 E+ P NC scattering data.

The double differential cross section for the 96-97 E+ P NC scattering data.

More…

Inclusive dijet production at low Bjorken-x in deep inelastic scattering.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 33 (2004) 477-493, 2004.
Inspire Record 630329 DOI 10.17182/hepdata.46329

Dijet production in deep inelastic ep scattering is investigated in the region of low values of the Bjorken-variable x (10^-4 &lt; x &lt; 10^-2) and low photon virtualities Q^2 (5 &lt; Q^2 &lt; 100 GeV^2). The measured dijet cross sections are compared with perturbative QCD calculations in next-to-leading order. For most dijet variables studied, these calculations can provide a reasonable description of the data over the full phase space region covered, including the region of very low x. However, large discrepancies are observed for events with small separation in azimuth between the two highest transverse momentum jets. This region of phase space is described better by predictions based on the CCFM evolution equation, which incorporates k_t factorized unintegrated parton distributions. A reasonable description is also obtained using the Color Dipole Model or models incorporating virtual photon structure.

15 data tables

Inclusive dijet cross section for a lower ET cut off of (5+0) GeV for the highest ET jet.

Inclusive dijet cross section for a lower ET cut off of (5+1) GeV for the highest ET jet.

Inclusive dijet cross section for a lower ET cut off of (5+2) GeV for the highest ET jet.

More…

Measurement and QCD analysis of neutral and charged current cross sections at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 30 (2003) 1-32, 2003.
Inspire Record 616311 DOI 10.17182/hepdata.11903

The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD analyses in the framework of the Standard Model to extract flavour separated parton distributions in the proton.

21 data tables

The NC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The CC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The NC cross section DSIG/DX for Q**2 > 1000 GeV**2. There is an additional 1.5 PCT normalization uncertainty.

More…

Measurement of neutral and charged current cross-sections in electron - proton collisions at high Q**2

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 19 (2001) 269-288, 2001.
Inspire Record 539088 DOI 10.17182/hepdata.46812

The inclusive e^-p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA, in the range of four-momentum transfer squared Q^2 between 150 and 30000 GeV^2, and Bjorken x between 0.002 and 0.65. The data were taken in 1998 and 1999 with a centre-of-mass energy of 320 GeV and correspond to an integrated luminosity of 16.4 pb^(-1). The data are compared with recent measurements of the inclusive neutral and charged current e^+p cross sections. For Q^2>1000 GeV^2 clear evidence is observed for an asymmetry between e^+p and e^-p neutral current scattering and the generalised structure function xF_3 is extracted for the first time at HERA. A fit to the charged current data is used to extract a value for the W boson propagator mass. The data are found to be in good agreement with Standard Model predictions.

12 data tables

The NC single differential cross section, as a function of X, for Y < 0.9 and Q**2 > 1000 GeV**2. The first DSYS error is the uncorrelated systematic errorand the second is the correlated systematic error.

The NC single differential cross section, as a function of X, for Y < 0.9 and Q**2 > 10000 GeV**2. The first DSYS error is the uncorrelated systematic error and the second is the correlated systematic error.

The CC single differential cross section, as a function of X, for measured for 0.03 < Y < 0.85 and Q**2 > 1000 GeV**2. and corrected by KCOR to Y < 0.9. The first DSYS error is the uncorrelated systematic error and the second is the correlated systematic error.

More…

Measurement of neutral and charged current cross-sections in positron proton collisions at large momentum transfer

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 13 (2000) 609-639, 2000.
Inspire Record 506029 DOI 10.17182/hepdata.43872

The inclusive single and double differential cross-sections for neutral and charged current processes with four-momentum transfer squared Q^2 between 150 and 30,000 GeV2 and with Bjorken x between 0.0032 and 0.65 are measured in e^+ p collisions. The data were taken with the H1 detector at HERA between 1994 and 1997, and they correspond to an integrated luminosity of 35.6 pb^-1. The Q^2 evolution of the parton densities of the proton is tested, yielding no significant deviation from the prediction of perturbative QCD. The proton structure function F_2(x,Q^2) is determined. An extraction of the u and d quark distributions at high x is presented. At high Q^2 electroweak effects of the heavy bosons Z0 and W are observed and found to be consistent with Standard Model expectation.

7 data tables

The structure function, F2, and the reduced cross section, in NC DIS scattering at Q**2 from 150 to 30000 GeV**2 as a function if x and y. Also tabulated are the QED corrections to the data, which have already been applied. The individual corrections used to calculate F2 from the cross sections are given in the following table.

The various corrections to the cross sections used to calcuate the F2 values given in the previous table. See the text of the paper for more details.

The CC double differential cross section and the structure function term PHI(C=CC) - see text of the paper for details - at Q**2 from 150 to 1 5000 GeV**2 as a function of both x and y. Also tabulated are the QED corrections to the data, which have already been applied.

More…

Determination of the longitudinal proton structure function F(L)(x,Q**2) at low x.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Phys.Lett.B 393 (1997) 452-464, 1997.
Inspire Record 426362 DOI 10.17182/hepdata.44694

A measurement of the inclusive cross section for the deep-inelastic scattering of positrons off protons at HERA is presented at momentum transfers $8.5 \leq Q~2 \leq 35 GeV~2$ and large inelasticity $y = 0.7$, i.e. for the Bjorken-x range $0.00013 \leq x \leq 0.00055$. Using a next-to-leading order QCD fit to the structure function F_2 at lower y values, the contribution of F_2 to the measured cross section at high y is calculated and, by subtraction, the longitudinal structure function F_{L} is determined for the first time with an average value of $F_L=0.52 \pm 0.03 (stat)$~ {+0.25}_{-0.22}$ (syst) at $Q~2=15.4 GeV~2$ and $x=0.000243$.

3 data tables

Inclusive cross section scaled by the kinematic factor K given by:. X*Q**4/((2*PI*ALPHA**2)*Y+). Y+=2(1-Y)+Y**2.

F2 values corresponding to the cross section measurements. X*Q**4/((2*PI*ALPHA**2)*Y+). Y+=2(1-Y)+Y**2.

Longitudinal structure function measurements.