Measurement of event shape variables in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 46 (2006) 343-356, 2006.
Inspire Record 699835 DOI 10.17182/hepdata.11377

Deep-inelastic ep scattering data taken with the H1 detector at HERA and corresponding to an integrated luminosity of 106 pb^{-1} are used to study the differential distributions of event shape variables. These include thrust, jet broadening, jet mass and the C-parameter. The four-momentum transfer Q is taken to be the relevant energy scale and ranges between 14 GeV and 200 GeV. The event shape distributions are compared with perturbative QCD predictions, which include resummed contributions and analytical power law corrections, the latter accounting for non-perturbative hadronisation effects. The data clearly exhibit the running of the strong coupling alpha_s(Q) and are consistent with a universal power correction parameter alpha_0 for all event shape variables. A combined QCD fit using all event shape variables yields alpha_s(mZ) = 0.1198 \pm 0.0013 ^{+0.0056}_{-0.0043} and alpha_0 = 0.476 \pm 0.008 ^{+0.018} _{-0.059}.

71 data tables

Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 14.0 to 16.0 GeV and X = 0.00841 .

Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 16.0 to 20.0 GeV and X = 0.01180 .

Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 20.0 to 30.0 GeV and X = 0.02090 .

More…

Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

33 data tables

The weighted value of ALPHA-S from all the measured observables using experimentally optimized renormalization scale values and corrected for the b-mass toleading order.

The value of ALPHA-S derived from the JCEF and corrected for heavy quark mass effects. The quoted errors are respectively due to experimental error, hadronization, renormalization scale and heavy quark mass correction uncertainties.

Energy Energy Correlation EEC.

More…