Version 2
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $\sqrt{s}=8$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 112, 2014.
Inspire Record 1306615 DOI 10.17182/hepdata.65179

Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The analysis is performed in the $H \rightarrow \gamma\gamma$ decay channel using 20.3 fb$^{-1}$ of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The $pp\rightarrow H \rightarrow \gamma\gamma$ fiducial cross section is measured to be $43.2 \pm 9.4 (stat) {}^{+3.2}_{-2.9} (syst) \pm 1.2 (lumi)$ fb for a Higgs boson of mass 125.4 GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.

57 data tables

Measured differential cross section with associated uncertainties as a function of transverse momentum of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of transverse momentum of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of absolute rapidity of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

More…

Studies of hadronic event structure in e+ e- annihilation from 30-GeV to 209-GeV with the L3 detector

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Rept. 399 (2004) 71-174, 2004.
Inspire Record 652683 DOI 10.17182/hepdata.54900

In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.

68 data tables

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 130.1 GeV.

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 136.1 GeV.

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 161.3 GeV.

More…

Measurement of the longitudinal cross-section using the direction of the thrust axis in hadronic events at LEP.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Phys.Lett.B 440 (1998) 393-402, 1998.
Inspire Record 474666 DOI 10.17182/hepdata.49354

In the process e+e- to hadrons, one of the effects of gluon emission is to modify the 1+cos(theta)**2 form of the angular distribution of the thrust axis, an effect which may be quantified by the longitudinal cross-section. Using the OPAL detector at LEP, we have determined the longitudinal to total cross-section ratio to be 0.0127+-0.0016+-0.0013 at the parton level, in good agreement with the expectation of QCD computed to Order(alpha_s**2) Comparisions at the hadron level with Monte Carlo models are presented. The dependence of the longitudinal cross-section on the value of thrust has also been studied, and provides a new test of QCD.

2 data tables

Values of SIG(C=L) integrated over all Thrust.

Measured values of the differential cross section, and the corresponding ratio of longitudinal to total cross sections, corrected to the hadron level.


QCD studies with e+ e- annihilation data at 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 75 (1997) 193-207, 1997.
Inspire Record 440721 DOI 10.17182/hepdata.47487

We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.

26 data tables

Determination of alpha_s.

Multiplicity and higher moments.

Thrust distribution.

More…

QCD studies with e+ e- annihilation data at 130-GeV and 136-GeV.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 72 (1996) 191-206, 1996.
Inspire Record 418007 DOI 10.17182/hepdata.47564

We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to\({\mathcal{O}}(\alpha _s^2 ) + NLLA\) QCD calculations, we determineαs(133 GeV)=0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈nch〉=23.40±0.45(stat.) ±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0=3.94±0.05(stat.)±0.11(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.

23 data tables

Determination of alpha_s.

Multiplicity and high moments.

Tmajor distribution.

More…

Determination of $alpha_{s}$ in second order {QCD} from hadronic $Z$ decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 54 (1992) 55-74, 1992.
Inspire Record 333272 DOI 10.17182/hepdata.14603

Distributions of event shape variables obtained from 120600 hadronicZ decays measured with the DELPHI detector are compared to the predictions of QCD based event generators. Values of the strong coupling constant αs are derived as a function of the renormalization scale from a quantitative analysis of eight hadronic distributions. The final result, αs(MZ), is based on second order perturbation theory and uses two hadronization corrections, one computed with a parton shower model and the other with a QCD matrix element model.

9 data tables

Experimental differential Thrust distributions.

Experimental differential Oblateness distributions.

Experimental differential C-parameter distributions.

More…

A Global determination of alpha-s (M(z0)) at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 55 (1992) 1-24, 1992.
Inspire Record 333079 DOI 10.17182/hepdata.14606

The value of the strong coupling constant,$$\alpha _s (M_{Z^0 } )$$, is determined from a study of 15 d

16 data tables

Differential jet mass distribution for the heavier jet using method T. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

Differential jet mass distribution for the jet mass difference using methodT. The data are corrected for the finite acceptance and resolution of the detec tor and for initial state photon radiation.

Differential jet mass distribution for the heavier jet using method M. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

More…

Jet Production and Fragmentation in e+ e- Annihilation at 12-GeV to 43-GeV

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Z.Phys.C 22 (1984) 307-340, 1984.
Inspire Record 195333 DOI 10.17182/hepdata.16272

We present the general properties of jets produced bye+e− annihilation. Their production and fragmentation characteristics have been studied with charged particles for c.m. energies between 12 and 43 GeV. In this energy rangee+e− annihilation into hadrons is dominated by pair production of the five quarksu, d, s, c andb. In addition, hard gluon bremsstrahlung effects which are invisible at low energies become prominent at the high energies. The observed multiplicity distributions deviate from a Poisson distribution. The multiplicity distributions for the overall event as well as for each event hemisphere satisfy KNO scaling to within ∼20%. The distributions ofxp=2p/W are presented; scale breaking is observed at the level of 25%. The quantityxpdδ/dxp is compared with multigluon emission calculations which predict a Gaussian distribution in terms of ln(1/x). The observed energy dependence of the maximum of the distributions is in qualitative agreement with the calculations. Particle production is analysed with respect to the jet axis and longitudinal and transverse momentum spectra are presented. The angular distribution of the jet axis strongly supports the idea of predominant spin 1/2 quark pair production. The particle distributions with respect to the event plane show clearly the growing importance of planar events with increasing c.m. energies. They also exclude the presence of heavy quark production,e+e−→Q\(\bar Q\) for quark masses up to 5<mQ<20.3 GeV (|eQ|=2/3) and 7<mQ<19 GeV (|eQ|=1/3). The comparison of 1/σtotdδ/dpT measured at 14, 22 and 34 GeV suggests that hard gluon bremsstrahlung contributes mainly to transverse momenta larger than 0.5 GeV/c. The rapidity distribution forW≧22 GeV shows an enhancement away fromy=0 which corresponds to an increase in yield of 10–15% compared to the centre region (y=0). The enhancement probably results from heavy quark production and gluon bremsstrahlung. The particle flux around the jet axis shows with increasing c.m. energy a rapidly growing number of particles collimated around the jet axis, while at large angles to the jet axis almost noW dependence is observed. For fixed longitudinal momentump‖ approximate “fan invariance” is seen: The shape of the angular distribution around the jet axis is almost independent ofW. The collimation depends strongly onp‖. For smallp‖,p‖<0.2 GeV/c, isotropy is observed. With increasingp‖ the particles tend to be emitted closer and closer to the jet axis.

14 data tables

R VALUES BELOW 32.5 GEV ARE IDENTICAL TO THOSE GIVEN IN BRANDELIK ET AL., PL 113B, 499 (1982).

No description provided.

CHARGED PARTICLE MULTIPLICITY DISTRIBUTIONS.

More…

Search for Top Quark and a Test of Models Without Top Quark at the Highest {PETRA} Energies

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 50 (1983) 799, 1983.
Inspire Record 182337 DOI 10.17182/hepdata.20549

With a PETRA energy scan in ≤30-MeV steps, the continuum production of open top quark up to 38.54 GeV is excluded. Over regions of energy scan from 29.90 to 38.63 GeV limits are set on the product of hadronic branching ratio and electronic width BhΓee for toponium to be less than 2.0 keV at the 95% confidence level. By a search for flavor-changing neutral currents in b decay, models without a top quark are excluded.

4 data tables

MEASUREMENT OF R IN ENERGY SCAN FROM SQRT(S) = 29.9 TO 3.146 AND 33.0 TO 36.72.

MEASUREMENT OF R IN THE RANGE SQRT(S) 37 TO 38.63 GEV.

THRUST DISTRIBUTION FOR EVENTS IN THE RANGE SQRT(S) 37.94 TO 38.63 AND 38.54 TO 38.63.

More…