Measurements of cross-sections and forward backward asymmetries at the Z resonance and determination of electroweak parameters

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Eur.Phys.J.C 16 (2000) 1-40, 2000.
Inspire Record 524027 DOI 10.17182/hepdata.49981

We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years 1993-95. A total luminosity of 103 pb^-1 was collected at centre-of-mass energies \sqrt{s} ~ m_Z and \sqrt{s} ~ m_Z +/- 1.8 GeV which corresponds to 2.5 million hadronic and 245 thousand leptonic events selected. These data lead to a significantly improved determination of Z parameters. From the total cross sections, combined with our measurements in 1990-92, we obtain the final results: m_Z = 91189.8 +/- 3.1 MeV, Gamma_Z = 2502.4 +/- 4.2 MeV, Gamma_had = 1741.1 +/- 3.8 MeV, Gamma_l = 84.14 +/- 0.17 MeV. An invisible width of Gamma_inv = 499.1 +/- 2.9 MeV is derived which in the Standard Model yields for the number of light neutrino species N_nu = 2.978 +/- 0.014. Adding our results on the leptonic forward-backward asymmetries and the tau polarisation, the effective vector and axial-vector coupling constants of the neutral weak current to charged leptons are determined to be \bar{g}_V^l = -0.0397 +/- 0.0017 and \bar{g}_A^l = -0.50153 +/- 0.00053.Including our measurements of the Z -> b \bar{b} forward-backward and quark charge asymmetries a value for the effective electroweak mixing angle of sin^2\bar{\theta}_W = 0.23093 +/- 0.00066 is derived. All these measurements are in good agreement with the Standard Model of electroweak interactions. Using all our measurements of electroweak observables an upper limit on the mass of the Standard Model Higgs boson of m_H < 133 GeV is set at 95% confidence level.

22 data tables

Updated values of coupling constants and electroweak mixing angle.

Cross sections for hadron production from the 1993 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.105 PCT.

Cross sections for hadron production from the 1994 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.088 PCT.

More…

Measurements of the tau polarization in Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 67 (1995) 183-202, 1995.
Inspire Record 393793 DOI 10.17182/hepdata.47961

A sample of Z0→τ+τ− events observed in the DELPHI detector at LEP in 1991 and 1992 is analysed to measure the τ polarisation in the exclusive decay channels\(ev\bar v\),\(\mu v\bar v\), πν, ρν and a1ν. The τ polarisation is also measured with an inclusive hadronic analysis which benefits from a higher efficiency and a better systematic precision than the use of the exclusive decay modes. The results have been combined with those published on the 1990 data. A measurement of the τ polarisation as a function of production angle yields the values for the mean τ polarisation 〈P〉τ=−0.148±0.022 and for the Z0 polarisationPZ=−0.136±0.027. These results are used to determine the ratio of vector to axial-vector effective couplings for taus\(\bar v_\tau/\bar a_\tau= 0.074 \pm 0.011\), and for electrons\(\bar v_e /\bar a_e= 0.068 \pm 0.014\), compatible with e-τ universality. With the assumption of lepton universality, the ratio of vector to axial-vector effective couplings for leptons\(\bar v_l /\bar a_l= 0.072 \pm 0.008\) is obtained, implying a value of the effective weak mixing angle sin2θefflept=0.2320±0.0021.

10 data tables

Results are for both TAU+ and TAU- decay.

The systematic error contains a systematic error of 0.003 common to all channels.

Errors are statistical only.

More…

Measurement of cross-sections and leptonic forward - backward asymmetries at the z pole and determination of electroweak parameters

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Z.Phys.C 62 (1994) 551-576, 1994.
Inspire Record 374696 DOI 10.17182/hepdata.48198

We report on the measurement of the leptonic and hadronic cross sections and leptonic forward-backward asymmetries at theZ peak with the L3 detector at LEP. The total luminosity of 40.8 pb−1 collected

28 data tables

Results from 1990 data. Additional systematic uncertainty of 0.3 pct.

Results from 1991 data. Additional systematic uncertainty of 0.15 pct.

Results from 1992 data. Additional systematic uncertainty of 0.15 pct.

More…

Measurements of cross-section and charge asymmetry for e+ e- ---> mu+ mu- and e+ e- ---> tau+ tau- at s**(1/2) = 57.8-GeV

The AMY collaboration Velissaris, C. ; Lusin, S. ; Chung, Y.S. ; et al.
Phys.Lett.B 331 (1994) 227-235, 1994.
Inspire Record 373861 DOI 10.17182/hepdata.38344

With data corresponding to 142 pb −1 accumulated at s = 57.8 GeV by the AMY detector at TRISTAN we measure the cross section of the reactions e + e − → μ + μ − and e + e − → τ + τ − and the symmetry in the angular distributions. For the lowest order cross section we obtain σ μμ = 27.54 ± 0.65 ± 0.95 pb and σ ττ = 28.27 ± 0.87 ± 0.69 pb, and for the forward-backward asymmetry, A μμ = 0.303 ± 0.027 ± 0.008 and A ττ = −0.291 ± 0.040 ± 0.019. These measurements agree with the standard model. Assuming e − μ − τ univrsality we extract the vector and axial coupling constants | gν | = 0.00 ± 0.09 and | g A | = 0.476 ± 0.024. A fit of data to composite models places lower bounds (95% confidence level) on the compositeness scale of 2–4 TeV.

5 data tables

Lowest order cross section and forward-backward asymmetry.

Errors are statistical only.

Lowest order cross section and forward-backward asymmetry.

More…

Measurements of the line shape of the Z0 and determination of electroweak parameters from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 417 (1994) 3-57, 1994.
Inspire Record 372144 DOI 10.17182/hepdata.48413

During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.

26 data tables

Hadronic cross sections from the 1990 data set. Additional systematic uncertainties come from efficiencies and background of 0.4 pct in addition to the luminosity uncertainty 0.7 pct.

Hadronic cross sections from the 1991 data set. Additional systematic uncertainties come from efficiencies and background of 0.2 pct in addition to the luminosity uncertainty 0.6 pct.

E+ E- cross sections from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).

More…

Update of electroweak parameters from Z decays

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 60 (1993) 71-82, 1993.
Inspire Record 354298 DOI 10.17182/hepdata.47312

Based on 520 000 fermion pairs accumulated during the first three years of data collection by the ALEPH detector at LEP, updated values of the resonance parameters of theZ are determined to beMZ=(91.187±0.009) GeV, ΓZ=(2.501±0.012) GeV, σhad0=(41.60±0.27) nb, andRℓ=20.78±0.13. The corresponding number of light neutrino species isNν=2.97±0.05. The forward-backward asymmetry in lepton-pair decays is used to determine the ratio of vector to axial-vector couplings of leptons:gV2(MZ2)/gA2(MZ2)=0.0052±0.0016. Combining this with ALEPH measurements of theb andc quark asymmetries and τ polarization gives sin2θWeff=0.2326±0.0013. Assuming the minimal Standard Model, and including measurements ofMW/MZ fromp\(\bar p\) colliders and neutrino-nucleon scattering, the mass of the top quark is\(M_{top} = 156 \pm \begin{array}{*{20}c} {22} \\ {25} \\ \end{array} \pm \begin{array}{*{20}c} {17} \\ {22Higgs} \\ \end{array} \) GeV.

15 data tables

Data from 1990 running period.

Data from 1990 running period.

Data from 1990 running period.

More…

Measurement of the forward - backward asymmetry of charm quark production in e+ e- annihilations at s**(1/2) = 58.4-GeV

The VENUS collaboration Okamoto, A. ; Abe, K. ; Amako, K. ; et al.
Phys.Lett.B 278 (1992) 393-398, 1992.
Inspire Record 320649 DOI 10.17182/hepdata.29244

The forward-backward asymmetry of charm quark production has been measured at an average of energy of 58.4 GeV with the VENUS detector at the TRISTAN e + e - collider. The charm quarks were identified through reconstruction of charged D ∗ mesons using the mass difference between the D ∗ and D 0 mesons. The measured charge asymmetry, -0.49 +.019 −0.17 ±0.04, is consistent with the prediction of the standard theory. The corresponding axial-vector coupling constant is 1.03 +0.40 −0.35 ±0.07.

2 data tables

No description provided.

Axial-vector coupling constant. Paper gives result for 2*GA.


Measurements of b quark forward - backward charge asymmetry and axial vector coupling using inclusive muons in e+ e- annihilation at s**(1/2) = 52-GeV - 61.4-Gev

The TOPAZ collaboration Shimonaka, A. ; Fujii, K. ; Miyamoto, A. ; et al.
Phys.Lett.B 268 (1991) 457-464, 1991.
Inspire Record 319034 DOI 10.17182/hepdata.29343

We have collected 122 multi-hadronic inclusive muon events with the TOPAZ detector at 〈 s 〉 = 58.27 GeV with ∫ L d t=40.61 pb −1 . From this event sample we derived the differential cross section for B-hadron productions and determined B-hadron forward-backward asymmetry (A b b ) to be A b b = −0.71 ± 0.34 ( stat ) +0.07 −0.08 ( syst ) . A fit to the differential cross section, after correcting for the effect of B 0 B 0 mixing, yielded the axial-vector coupling constant of the b-quark ( a b ): a b = −1.79 +0.34 −0.32 (stat) +0.15 −0.14 (syst). We also set a 90% confidence level limit of χ <0.37 on the B 0 B 0 mixing parameter.

4 data tables

Observed differential cross section.

No description provided.

No description provided.

More…

Measurement of the polarization of tau leptons produced in Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 265 (1991) 430-444, 1991.
Inspire Record 316781 DOI 10.17182/hepdata.29377

The polarization of τ leptons produced in the reaction e + e − → τ + τ − at the Z resonance has been measured using the τ decay modes e ν e ν τ , μν μ ν τ , πν τ , ϱν τ , and a 1 ν τ . The mean value obtained is P τ = −0.152±0.045, indicating that parity is violated in the neutral current process e + e − → τ + τ − . The result corresponds to a ratio of a neutral current vector and axial vector coupling constants of the τ lepton g V τ (M 2 Z ) g A τ (M 2 Z ) = 0.076±0.023 and a value of the electroweak mixing parameter sin 2 θ w ( M 2 Z ) = 0.2302 ± 0.0058.

2 data tables

Results are for both TAU+ and TAU- decay. Final combined result contains statistical and systematic errors added in quadrature.

No description provided.


A Measurement of the electroweak couplings of up and down type quarks using final state photons in hadronic z0 decays

The OPAL collaboration Alexander, G. ; Allison, J. ; Allport, P.P. ; et al.
Phys.Lett.B 264 (1991) 219-232, 1991.
Inspire Record 316154 DOI 10.17182/hepdata.48516

The production rate of final state photons in hadronic Z 0 decays is measured as a function of y cut = M ij 2 / E cm 2 the jet resolution parameter and minimum mass of the photon-jet system. Good agreement with the theoretical expectation from an O( αα s ) matrix element calculation is observed. Comparing the measurement and the prediction for y cut = 0.06, where the experimental systematic and statistical errors and the theoretical uncertainties are small, and combining this measurement with our result for the hadronic width of the Z 0 , we derived partial widths of up and down type quarks to be Γ u = 333 ± 55 ± 72 MeV and Γ d = 358 ± 37 ± 48 MeV in agreement with the standard model expectations. We compare our yield with the QCD shower models including photon radiation. At low γ cut JETSET underestimates the photon yield, and ARIADNE describes the production rate well.

2 data tables

It is assumed that the couplings of various up quarks to be the same.

It is assumed that the couplings of various down type quarks to be the same.