Forward and Backward Multiplicities in $K^- p$ Interactions at 110-{GeV}/$c$

The Aachen-Berlin-CERN-Cracow-London-Vienna-Warsaw collaboration Gottgens, R. ; Kohli, J.M. ; Sixel, P. ; et al.
Z.Phys.C 11 (1981) 189, 1981.
Inspire Record 166387 DOI 10.17182/hepdata.16482

Multiplicity distributions and correlations between charged particles in the forward and back-ward c.m. hemispheres are studied inK−p interactions at 110 GeV/c and compared with other data on mesonnucleon scattering. The interpretation in terms of a simple quark-parton picture assuming that the forward multiplicity is dominated by quark fragmentation and the backward multiplicity by diquark fragmentation is supported by the experimental fact that the forward and the backward mean multiplicities are approximately equal to half of thee+e− andpp multiplicities, respectively. The 110 GeV/cK−p data show significant correlations between the numbers of slow forward and slow backward particles, whereas the multiplicities of fast forward and fast backward particles are independent.

2 data tables

CHARGED MULTIPLICITY PER INELASTIC EVENT.

NONDIFFRACTIVE SAMPLE ( -0.85 < XL < 0.85 ). CHARGED MULTIPLICITY PER INELASTIC EVENT.


Charmed Multiplicities in $K^- p$ Interactions at 110-{GeV}/$c$

The Aachen-Berlin-CERN-Cracow-London-Vienna-Warsaw collaboration Ransone, G. ; Sixel, P. ; Kaufmann, H.H. ; et al.
Nucl.Phys.B 167 (1980) 285-291, 1980.
Inspire Record 144124 DOI 10.17182/hepdata.34553

The charged multiplicity distribution is presented for K − p interactions produced in the hydrogen bubble chamber, BEBC, using an r.f. separated, tagged K − beam of 110 GeV/ c momentum. A comparison with K + p, πp and pp data at lower energies shows that the main features of the multiplicity distributions depend on energy and charge of the incident particles, but not on their strangeness. At high energies, only the energy is important.

3 data tables

No description provided.

No description provided.

No description provided.