Exclusive measurements of pi+- p --> pi+ pi+- n near threshold.

The CHAOS collaboration Kermani, M. ; Amaudruz, P.A. ; Bonutti, F. ; et al.
Phys.Rev.C 58 (1998) 3419-3430, 1998.
Inspire Record 483005 DOI 10.17182/hepdata.25726

The pion induced pion production reactions π±p→π+π±n were studied at projectile incident energies of 223, 243, 264, 284, and 305 MeV, using a cryogenic liquid hydrogen target. The Canadian High Acceptance Orbit Spectrometer was used to detect the two outgoing pions in coincidence. The experimental results are presented in the form of single differential cross sections. Total cross sections obtained by integrating the differential quantities are also reported. In addition, the invariant mass distributions from the (π+π−) channel were fitted to determine the parameters for an extended model based on that of Oset and Vicente-Vacas. We find the model parameters obtained from fitting the (π+π−) data do not describe the invariant mass distributions in the (π+π+) channel.

2 data tables

Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).

Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).


Measurement of pi- p --> pi0 pi0 n from threshold to p(pi-) 750-MeV/c.

The Crystal Ball collaboration Prakhov, S. ; Nefkens, B.M.K. ; Allgower, C.E. ; et al.
Phys.Rev.C 69 (2004) 045202, 2004.
Inspire Record 647544 DOI 10.17182/hepdata.25355

Reaction π−p→π0π0n has been measured with high statistics in the beam momentum range 270–750MeV∕c. The data were obtained using the Crystal Ball multiphoton spectrometer, which has 93% of 4π solid angle coverage. The dynamics of the π−p→π0π0n reaction and the dependence on the beam energy are displayed in total cross sections, Dalitz plots, invariant-mass spectra, and production angular distributions. Special attention is paid to the evaluation of the acceptance that is needed for the precision determination of the total cross section σt(π−p→π0π0n). The energy dependence of σt(π−p→π0π0n) shows a shoulder at the Roper resonance [i.e., the N(1440)12+], and there is also a maximum near the N(1520)32−. It illustrates the importance of these two resonances to the π0π0 production process. The Dalitz plots are highly nonuniform; they indicate that the π0π0n final state is dominantly produced via the π0Δ0(1232) intermediate state. The invariant-mass spectra differ much from the phase-space distributions. The production angular distributions are also different from the isotropic distribution, and their structure depends on the beam energy. For beam momenta above 550MeV∕c, the density distribution in the Dalitz plots strongly depends on the angle of the outgoing dipion system (or equivalently on the neutron angle). The role of the f0(600) meson (also known as the σ) in π0π0n production remains controversial.

5 data tables

Measured total cross section. Statistical errors only.

Differential angular distributions of the 2PI0 system for the LH2 data at beam momenta 355 to 472 MeV/c. Statistical errors only.

Differential angular distributions of the 2PI0 system for the LH2 data at beam momenta 550 to 678 MeV/c. Statistical errors only.

More…

Differential cross section of the pion nucleon charge-exchange reaction pi- p --> pi0 n in the momentum range from 148-MeV/c to 323-MeV/c.

The Crystal Ball collaboration Sadler, M.E. ; Kulbardis, A. ; Abaev, V. ; et al.
Phys.Rev.C 69 (2004) 055206, 2004.
Inspire Record 646714 DOI 10.17182/hepdata.31725

Measured values of the differential cross section for pion-nucleon charge exchange are presented at momenta 148, 174, 188, 212, 238, 271, 298, and 323 MeV/c, a region dominated by the Delta resonance. Complete angular distributions were obtained using the Crystal Ball detector at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). Statistical uncertainties of the differential cross sections are typically 2-6%, exceptions being the results at the lowest momentum and at the most forward measurements of the five lowest momenta. We estimate the systematic uncertainties to be 3-6%.

3 data tables

The errors shown are statistical only.

The errors shown are statistical only.

The total charge-exchange reaction cross section as a function of pion momentum obtained by integrating the differential cross sections. The errors shown are the total and statistical errors.


Measurement of the spin rotation parameter A+ in the elastic scattering of positive pions on a longitudinally polarized proton target in the second resonance region

The ITEP-PNPI collaboration Alekseev, I.G. ; Bobchenko, B.M. ; Budkovsky, P.E. ; et al.
Phys.Lett.B 351 (1995) 585-590, 1995.
Inspire Record 403317 DOI 10.17182/hepdata.28540

The ITEP-PNPI collaboration presents the first results of the spin rotation parameter A + measurements in the second resonance region. The experiment was performed at the ITEP accelerator at a positive pion beam momentum 1.43 GeV/c for scattering angles θ cm = 127° and 133°. The setup was based on a polarized proton target and a carbon-plate polarimeter. The obtained data is compared with the predictions of the existing partial-wave analyses.

1 data table

No description provided.


Measurements of spin rotation parameter A in pion proton elastic scattering at 1.62-GeV/c.

The ITEP-PNPI collaboration Alekseev, I.G. ; Budkovsky, P.E. ; Kanavets, V.P. ; et al.
Phys.Lett.B 485 (2000) 32-36, 2000.
Inspire Record 526552 DOI 10.17182/hepdata.41744

The ITEP-PNPI collaboration presents the results of the measurements of the spin rotation parameter A in the elastic scattering of positive and negative pions on protons at P_beam = 1.62 GeV/c. The setup included a longitudinally-polarized proton target with superconductive magnet, multiwire spark chambers and a carbon polarimeter with thick filter. Results are compared to the predictions of partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.

2 data tables

No description provided.

No description provided.


Measurement of $\pi^- p \to \pi^- p \pi^0$ Reaction Near Threshold and Breaking of Chiral Symmetry

The OMICRON collaboration Kernel, G. ; Korbar, D. ; Krizan, P. ; et al.
Phys.Lett.B 225 (1989) 198-202, 1989.
Inspire Record 278272 DOI 10.17182/hepdata.29804

A full-kinematics measurement of the π − p→ π − p π 0 reaction in the incident π − momentum region from 295 to 450 MeV/ c is presented. The measurement was performed with the OMICRON spectrometer at the CERN synchrocyclotron.

1 data table

Integrated cross section.


Cross-section Measurement of $\pi^- p \to \pi^- \pi^+ n$ Reaction Near Threshold

The OMICRON collaboration Kernel, G. ; Korbar, D. ; Krizan, P. ; et al.
Phys.Lett.B 216 (1989) 244-248, 1989.
Inspire Record 264989 DOI 10.17182/hepdata.29858

Result of cross section measurements for the reaction π − p → π − π + n are presented. They cover a range of incident pion momenta between 295 and 450 MeV/ c . It is the first time that the cross section has been measured so close to threshold. The experiment was performed with Omicron, a large-solid-angle spectrometer, which enables a measurement of the full set of kinematic variables. In the region of overlap there is a good agreement with other experiments. The extracted value for the chiral-symmetry-breaking parameter ξ is seen to be largely extrapolition dependent but the measured value of -0.5±0.8 leaves Weinberg's prediction of ξ =0 the only remaining choice.

1 data table

No description provided.


Measurement of the reaction pi+ p ---> pi+ pi+ n near threshold

The OMICRON collaboration Kernel, G. ; Korbar, D. ; Krizan, P. ; et al.
Z.Phys.C 48 (1990) 201-208, 1990.
Inspire Record 297700 DOI 10.17182/hepdata.15134

The reaction π+p→π+π+n was studied in the vicinity of the reaction threshold at ten incident pion beam momenta from 297 MeV/c to 480 MeV/c. From data angular distributions, invariant mass spectra and integrated cross-sections were deduced. The chiral symmetry breaking parameter as determined by this reaction equals to ξ=1.56±0.26±0.39, where the first error is experimental, while the latter reflects the uncertainty in the ansatz used in the extrapolation to the reaction threshold. A comparison with the other reaction channels of the reaction πp→ππN indicates that a single parameter (ξ) is not sufficient to describe low energy ππ interactions.

1 data table

No description provided.


Measurement of pi-p Elastic Scattering at 180-degrees

Kormanyos, S.W. ; Krisch, A.D. ; O'Fallon, J.R. ; et al.
Phys.Rev. 164 (1967) 1661-1671, 1967.
Inspire Record 944948 DOI 10.17182/hepdata.51371

We have measured the differential cross section for π−p elastic scattering at 180° in steps of 0.10 GeV/c or less in the region P0=1.6 to 5.3 GeV/c. We detected elastic scattering events, from protons in a liquid H2 target, with a double spectrometer consisting of magnets and scintillation counters in coincidence. The incident π− beam was counted by scintillation counters. The cross section was found to have considerable structure. This may be interpreted as interference between the resonant amplitudes and the nonresonant or background amplitude. Very strong destructive interference occurs around P0=2.15 GeV/c, where the cross section drops almost two orders of magnitude in passing through the N*(2190). Another interesting feature of the data is a large narrow peak in the cross section at P0=5.12 GeV/c, providing firm evidence for the existence of a nucleon resonance with a mass of 3245±10 MeV. This N*(3245) has a full width of less than 35 MeV, which is about 1% of its mass. From this experiment we were able to determine the parity and the quantity χ(J+12) for each N* resonance, where χ is the elasticity and J is the spin of the resonance.

45 data tables

No description provided.

No description provided.

No description provided.

More…

Analyzing powers for the pi- p(pol.) --> pi0 n reaction across the Delta(1232) resonance.

Gaulard, C.V. ; Riedel, C.M. ; Comfort, Joseph R. ; et al.
Phys.Rev.C 60 (1999) 024604, 1999.
Inspire Record 483795 DOI 10.17182/hepdata.51678

High quality analyzing powers for the π−p→→π0n reaction have been obtained with a polarized proton target over a broad angular range at incident kinetic energies of 98.1, 138.8, 165.9, and 214.4 MeV. This experiment nearly doubled the existing πN single-charge-exchange database for energies ranging from 10 to 230 MeV, with 36 new analyzing powers. The Neutral Meson Spectrometer was used to detect the outgoing neutral pions. The data are well described by recent phase-shift analyses. When combined with high-precision and accurate cross section data at the same energies, the data can provide a good test of the degree of isospin breaking in the region of the Δ(1232) resonance. They will also be helpful for constraining the evaluation of the pion-nucleon σ term from the scattering amplitudes.

4 data tables

First error is total uncertainty.

First error is total uncertainty.

First error is total uncertainty.

More…