J / psi production via chi(c) decays in 920-GeV pA interactions

The HERA-B collaboration Abt, I. ; Abyzov, A. ; Adams, M. ; et al.
Phys.Lett.B 561 (2003) 61-72, 2003.
Inspire Record 601830 DOI 10.17182/hepdata.57487

Using data collected by the HERA-B experiment, we have measured the fraction of J\psi's produced via radiative chi_c decays in interactions of 920 GeV protons with carbon and titanium targets. We obtained R_{\chi_c} = 0.32 \pm 0.06_{stat} \pm 0.04_{sys} for the fraction of J\psi from chi_c decays averaged over proton-carbon and proton-titanium collisions. This result is in agreement with previous measurements and is compared with theoretical predictions.

4 data tables

Ratio of CHIC to J/PSI production cross section in P C interactions for the E+ E- and MU+ MU- channels separately.

Ratio of CHI/C to J/PSI production cross section in P TI interactions for the E+ E- and MU+ MU- channels separately.

Averaged ratio of CHIC to J/PSI production cross section in P C and P Ti interactions.

More…

Observation of diffractive J / psi production at the Fermilab Tevatron

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 87 (2001) 241802, 2001.
Inspire Record 560628 DOI 10.17182/hepdata.55764

We report the first observation of diffractive $J/\psi(\to \mu^+\mu^-)$ production in $\bar pp$ collisions at $\sqrt{s}$=1.8 TeV. Diffractive events are identified by their rapidity gap signature. In a sample of events with two muons of transverse momentum $p_T^{\mu}>2$ GeV/$c$ within the pseudorapidity region $|\eta|<$1.0, the ratio of diffractive to total $J/\psi$ production rates is found to be $R_{J/\psi}= [1.45\pm 0.25]%$. The ratio $R_{J/\psi}(x)$ is presented as a function of $x$-Bjorken. By combining it with our previously measured corresponding ratio $R_{jj}(x)$ for diffractive dijet production, we extract a value of $0.59\pm 0.15$ for the gluon fraction of the diffractive structure function of the proton.

3 data tables

Diffractive to total J/psi production ratio.

Ratio of diffractive to total J/psi rate, per unit of the fractional momentum loss of the leading (anti)proton, and as a function of x-Bjorken of the struck parton of the (anti)proton adjacent to the rapidity gap and participating in the J/psi production.

Gluon fraction of the diffractive structure function of the (anti)proton.


Branching ratio measurements of exclusive B+ decays to charmonium with the Collider Detector at Fermilab

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 66 (2002) 052005, 2002.
Inspire Record 588090 DOI 10.17182/hepdata.56734

We report on measurements of the branching ratios of the decays B+→χc10(1P)K+ and B+→J/ψK+π+π−, where χc10(1P)→J/ψγ and J/ψ→μ+μ− in pp¯ collisions at s=1.8TeV. Using a data sample from an integrated luminosity of 110pb−1 collected by the Collider Detector at Fermilab we measure the branching ratios to be BR(B+→χc10(1P)K+)=15.5±5.4(stat)±1.5(syst)±1.3(br)×10−4 and BR(B+→J/ψK+π+π−)=6.9±1.8(stat)±1.1(syst)±0.4(br)×10−4 where (br) is due to the finite precision on BR(B+→J/ψK+), BR(χc10(1P)→J/ψγ) is used to normalize the signal yield, and (syst) encompasses all other systematic uncertainties.

2 data tables

Branching ratio for B+ decay in chi_c1(1P) and K+ Last error is due to finite precision on the branching ratio for chi_c1(1P) --> J/psi photon.

Branching ratio for B+ decay in J/psi K+ pi+ pi- Last error is due to finite precision on the branching ratio for B+ --> J/psi K+.


Observation of exclusive charmonium production and $\gamma+\gamma$ to $\mu^+\mu^-$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.Lett. 102 (2009) 242001, 2009.
Inspire Record 812821 DOI 10.17182/hepdata.55758

We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| < 0.6, with M(mumu) in [3.0,4.0] GeV/c2, and either no other particles, or one additional photon, detected. The J/psi and the psi(2S) are prominent, on a continuum consistent with the QED process gamma+gamma --> mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)| < 0.6, M(mumu) in [3.0,4.0] GeV/c2, is [Integral ds/(dM.deta1.deta2)] = 2.7+/-0.5 pb, consistent with QED predictions. We put an upper limit on the cross section for odderon exchange in J/psi production: ds/dy(y=0) (J/psi_O/IP) < 2.3 nb at 95% C.L.

5 data tables

Prompt J/psi cross section from exclusive photoproduction at mid rapidity.

Prompt Psi(2S) cross section from exclusive photoproduction at mid rapidity.

Prompt photoproduction cross-section ratio Psi(2S)/(J/psi) at mid rapidity.

More…

The proton and deuteron F_2 structure function at low Q^2

Tvaskis, V. ; Arrington, J. ; Asaturyan, R. ; et al.
Phys.Rev.C 81 (2010) 055207, 2010.
Inspire Record 844968 DOI 10.17182/hepdata.56742

Measurements of the proton and deuteron $F_2$ structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range $0.06 < Q^2 < 2.8$ GeV$^2$, and Bjorken $x$ values from 0.009 to 0.45, thus extending the knowledge of $F_2$ to low values of $Q^2$ at low $x$. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for $Q^2<2$ GeV$^2$ at the low and high $x$-values. Down to the lowest value of $Q^2$, the structure function is in good agreement with a parameterization of $F_2$ based on data that have been taken at much higher values of $Q^2$ or much lower values of $x$, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low $x$ remains well described by a logarithmic dependence on $Q^2$ at low $Q^2$.

62 data tables

Proton and Deuteron F2 structure function for an x value of 0.040, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.

Proton and Deuteron F2 structure function for an x value of 0.060, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.

Proton and Deuteron F2 structure function for an x value of 0.080, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.

More…

Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Nucl.Phys.A 845 (2010) 1-32, 2010.
Inspire Record 846170 DOI 10.17182/hepdata.55369

We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.

57 data tables

F2 measurements for a Q**2 of 0.175 GeV**2.

F2 measurements for a Q**2 of 0.225 GeV**2.

F2 measurements for a Q**2 of 0.275 GeV**2.

More…

Prompt K_short production in pp collisions at sqrt(s)=0.9 TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adeva, B ; et al.
Phys.Lett.B 693 (2010) 69-80, 2010.
Inspire Record 865584 DOI 10.17182/hepdata.55676

The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 &lt; pT &lt; 1.6 GeV/c and 2.5 &lt; y &lt; 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.

3 data tables

The measured cross sections as a function of transverse momentum for prompt K0S production in three rapidity regions. The first systematic error is the uncorrelated systemtatic error and the second is the systematic error correlated across bins.

The double differential prompt K0S production cross section in three rapidity bands.

The double differential prompt K0S production cross section in the rapidity band 2.5 to 4.0.


Measurement of Spin-Density Matrix Elements for $\phi$-Meson Photoproduction from Protons and Deuterons Near Threshold

The LEPS collaboration Chang, W.C. ; Ahn, D.S. ; Ahn, J.K. ; et al.
Phys.Rev.C 82 (2010) 015205, 2010.
Inspire Record 859164 DOI 10.17182/hepdata.55768

The LEPS/SPring-8 experiment made a comprehensive measurement of the spin-density matrix elements for $\gamma p \to \phi p$, $\gamma d \to \phi p n$ and $\gamma d \to \phi d$ at forward production angles. A linearly polarized photon beam at $E_{\gamma}$=1.6-2.4 GeV was used for the production of $\phi$ mesons. The natural-parity Pomeron exchange processes remains dominant nearthreshold. The unnatural-parity processes of pseudoscalar exchange is visible in the production from nucleons but is greatly reduced in the coherent production from deuterons. There is no strong $E_{\gamma}$-dependence, but some dependence on momentum-transfer. A small but finite value of the spin-density matrix elements reflecting helicity-nonconserving amplitudes in the $t$-channel is observed.

81 data tables

Measurements of the spin density matrix element RHO(JJ=0,MM=00) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.

Measurements of the spin density matrix element RE(RHO(JJ=0,MM=10)) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.

Measurements of the spin density matrix element RHO(JJ=0,MM=1-1) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.

More…

Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 82 (2010) 034001, 2010.
Inspire Record 849042 DOI 10.17182/hepdata.55734

We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT &gt; 0.5 GeV/c, pseudorapidity |\eta| &lt; 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 &lt; M(pair) &lt; 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.

15 data tables

Drell-Yan events. Charged particle density in the toward, transverse and away regions.

Drell-Yan events. Charged particle density in the transMAX, transMIN and transDIF regions.

Drell-Yan events. Charged particle PTsum density in the toward, transverse and away regions.

More…

A Measurement of the t-tbar Cross Section in p-pbar Collisions at sqrt(s) = 1.96 TeV using Dilepton Events with a Lepton plus Track Selection

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.D 79 (2009) 112007, 2009.
Inspire Record 816726 DOI 10.17182/hepdata.63509

This paper reports a measurement of the cross section for the pair production of top quarks in ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron. The data was collected from the CDF II detector in a set of runs with a total integrated luminosity of 1.1 fb^{-1}. The cross section is measured in the dilepton channel, the subset of ttbar events in which both top quarks decay through t -> Wb -> l nu b where l = e, mu, or tau. The lepton pair is reconstructed as one identified electron or muon and one isolated track. The use of an isolated track to identify the second lepton increases the ttbar acceptance, particularly for the case in which one W decays as W -> tau nu. The purity of the sample may be further improved at the cost of a reduction in the number of signal events, by requiring an identified b-jet. We present the results of measurements performed with and without the request of an identified b-jet. The former is the first published CDF result for which a b-jet requirement is added to the dilepton selection. In the CDF data there are 129 pretag lepton + track candidate events, of which 69 are tagged. With the tagging information, the sample is divided into tagged and untagged sub-samples, and a combined cross section is calculated by maximizing a likelihood. The result is sigma_{ttbar} = 9.6 +/- 1.2 (stat.) -0.5 +0.6 (sys.) +/- 0.6 (lum.) pb, assuming a branching ratio of BR(W -> ell nu) = 10.8% and a top mass of m_t = 175 GeV/c^2.

1 data table

Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.