Spin asymmetries A(1) and structure functions g1 of the proton and the deuteron from polarized high energy muon scattering.

The Spin Muon collaboration Adeva, B. ; Akdogan, T. ; Arik, E. ; et al.
Phys.Rev.D 58 (1998) 112001, 1998.
Inspire Record 471981 DOI 10.17182/hepdata.49492

We present the final results of the spin asymmetries A1 and the spin structure functions g1 of the proton and the deuteron in the kinematic range 0.0008<x<0.7 and 0.2<Q2<100GeV2. For the determination of A1, in addition to the usual method which employs inclusive scattering events and includes a large radiative background at low x, we use a new method which minimizes the radiative background by selecting events with at least one hadron as well as a muon in the final state. We find that this hadron method gives smaller errors for x<0.02, so it is combined with the usual method to provide the optimal set of results.

12 data tables

The virtual photon proton asymmetries.

The virtual photon deuteron asymmetries.

The virtual photon proton asymmetries in smaller X and Q**2 bins. bins. Errors are statistical only.

More…

A next-to-leading order QCD analysis of the spin structure function g1.

The Spin Muon collaboration Adeva, B. ; Akdogan, T. ; Arik, E. ; et al.
Phys.Rev.D 58 (1998) 112002, 1998.
Inspire Record 471982 DOI 10.17182/hepdata.49415

We present a next-to-leading order QCD analysis of the presently available data on the spin structure function g1 including the final data from the Spin Muon Collaboration. We present results for the first moments of the proton, deuteron, and neutron structure functions, and determine singlet and nonsinglet parton distributions in two factorization schemes. We also test the Bjorken sum rule and find agreement with the theoretical prediction at the level of 10%.

7 data tables

The second systematic (DSYS) error is due to QCD evolution.

First moments of the fitted function G1 evaluated on unmeasured X regions. Total uncertainties due to experimental systematics and theoretical sourc es in the QCD evolution.

First moment of fitted G1 evaluated on the whole X region.

More…

The Present status of the nucleon spin structure functions

The Spin Muon collaboration Horikawa, N. ;
Nucl.Phys.A 577 (1994) 313C-318C, 1994.
Inspire Record 386219 DOI 10.17182/hepdata.36532

SMC is progressing a series of experiments to reveal the spin structure of nucleon at CERN. The first experiment on deuteron has been performed in 1992. We will report here the data on deuteron and discuss the present status of nucleon spin structure using all data including SMC and also E142(SLAC) data recently reported.

1 data table

First moment of the spin-dependent structure function G1.


Results from SMC on the spin dependent structure function g1(p) of the proton

The Spin Muon collaboration Witzmann, A. ;
Nucl.Phys.A 577 (1994) 319C-324C, 1994.
Inspire Record 386220 DOI 10.17182/hepdata.36521

The spin-dependent structure function g 1 p has been measured by deep inelastic scattering of polarized muons off polarized protons at 190 GeV incident muon energy. The data cover a kinematic range of 1 < Q 2 < 80 GeV 2 and 0.003 < x < 0.6, where −Q 2 is the squared 4-momentum transfer and x is the Biorken scaling variable. The first moment Γ 1 p = ∫ 0 1 g 1 p d x = 0.152 ± 0.015( stat. ) ± 0.018( syst. ) is smaller than the prediction of the Ellis-Jaffe sum rule by one standard deviation. This result leads to a contribution of the quark spins to the proton spin of δΣ = 0.36 ± 0.21. All results presented here are preliminary.

1 data table

First moment of the spin-dependent structure function G1.


A New measurement of the spin dependent structure function g1(x) of the deuteron

The Spin Muon collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Lett.B 357 (1995) 248-254, 1995.
Inspire Record 397392 DOI 10.17182/hepdata.47847

We present a new measurement of the spin-dependent structure function g 1 d of the deuteron in deep inelastic scattering of 190 GeV polarised muons on polarised deuterons, in the kinematic range 0.003 < x < 0.7 and 1 GeV 2 < Q 2 < 60 GeV 2 . This structure function is found to be negative at small x . The first moment Γ 1 d =∫ 0 1 g 1 d d x evaluated at Q 0 2 = 10 GeV 2 is 0.034 ± 0.009 (stat.) ± 0.006 (syst.). This value is below the Ellis-Jaffe sum rule prediction by three standard deviations. Using our earlier determination of Γ 1 p , we obtain Γ 1 p − Γ 1 n = 0.199 ± 0.038 which agrees with the Bjorken sum rule.

4 data tables

Results on the virtual photon deuteron asymmetry.

Results on the spin structure function of the deuteron.

Results on the spin structure function of the neutron.

More…

Measurement of the spin dependent structure function g1(x) of the deuteron.

The Spin Muon collaboration Adeva, B. ; Ahmad, S. ; Arvidson, A. ; et al.
Phys.Lett.B 302 (1993) 533-539, 1993.
Inspire Record 354911 DOI 10.17182/hepdata.28926

We report on the first measurement of the spin-dependent structure function g 1 d of the deuteron in the deep inelastic scattering of polarised muons off polarised deuterons, in the kinematical range 0.006< x <0.6, 1 GeV 2 < Q 2 <30 GeV 2 . The first moment, Γ 1 d =ʃ 0 1 g 1 d d x=0.023±0.020 ( stat. ) ± 0.015 ( syst. ) , is smaller than the prediction of the Ellis-Jaffe sum rules. Using earlier measurements of g 1 p , we infer the first moment of the spin-dependent neutron structure function g 1 n . The difference Γ 1 p − Γ 1 n =0.20±0.05 (stat.) ± 0.04 (syst.) agrees with the prediction of the Bjorken sum rule, Γ 1 p − Γ 1 n =0.191±0.002.

2 data tables

Virtual photon asymmetry A1.

Spin-dependent structure function G1.