Studies of Jet Mass in Dijet and W/Z + Jet Events

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 05 (2013) 090, 2013.
Inspire Record 1224539 DOI 10.17182/hepdata.60335

Invariant mass spectra for jets reconstructed using the anti-kt and Cambridge-Aachen algorithms are studied for different jet "grooming" techniques in data corresponding to an integrated luminosity of 5 inverse femtobarns, recorded with the CMS detector in proton-proton collisions at the LHC at a center-of-mass energy of 7 TeV. Leading-order QCD predictions for inclusive dijet and W/Z+jet production combined with parton-shower Monte Carlo models are found to agree overall with the data, and the agreement improves with the implementation of jet grooming methods used to distinguish merged jets of large transverse momentum from softer QCD gluon radiation.

74 data tables

The unfolded distributions (x1000) for the mean mass of the two leading jets in in dijet events for reconstructed AK7 jets, for the mean PT of the two leading jets in the range 220-300 GeV/c.

The unfolded distributions (x1000) for the mean mass of the two leading jets in in dijet events for reconstructed AK7 jets, for the mean PT of the two leading jets in the range 300-450 GeV/c.

The unfolded distributions (x1000) for the mean mass of the two leading jets in in dijet events for reconstructed AK7 jets, for the mean PT of the two leading jets in the range 450-500 GeV/c.

More…

Measurement of WZ and ZZ production in pp collisions at sqrt(s) = 8 TeV in final states with b-tagged jets

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 74 (2014) 2973, 2014.
Inspire Record 1285492 DOI 10.17182/hepdata.64619

Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions at $\sqrt{s}$ = 8 TeV in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either $W \to e\nu, \mu\nu$ or $Z \to e^+ e^-, \mu^+ \mu^-$, or $\nu\bar{\nu})$. The results are based on data corresponding to an integrated luminosity of 18.9 inverse-femtobarns collected with the CMS detector at the Large Hadron Collider. The measured cross sections, $\sigma(pp \to WZ)$ = 30.7 $\pm$ 9.3 (stat.) $\pm$ 7.1 (syst.) $\pm$ 4.1 (th.) $\pm$ 1.0 (lum.) pb and $\sigma(pp \to ZZ)$ = 6.5 $\pm$ 1.7 (stat.) $\pm$ 1.0 (syst.) $\pm$ 0.9 (th.) $\pm$ 0.2 (lum.) pb, are consistent with next-to-leading order quantum chromodynamics calculations.

4 data tables

The cross section for inclusive WZ production for the mass range 60 < M(Z) < 120 GeV.

The cross section for inclusive ZZ production for the mass range 60 < M(Z) < 120 GeV.

The cross section for inclusive WZ production in the region defined by 60 < M(Z) < 120 GeV and PT(W) > 100 GeV.

More…

Measurement of the electron charge asymmetry in inclusive W production in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 109 (2012) 111806, 2012.
Inspire Record 1118047 DOI 10.17182/hepdata.66333

A measurement of the electron charge asymmetry in inclusive pp to W + X to e nu + X production at sqrt(s) = 7 TeV is presented based on data recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 840 inverse picobarns. The electron charge asymmetry reflects the unequal production of positive and negative W bosons in pp collisions. The electron charge asymmetry is measured in bins of absolute value of electron pseudorapidity in the range of abs(eta) < 2.4. The asymmetry rises from about 0.1 to 0.2 as a function of the pseudorapidity and is measured with a relative precision better than 7%. This measurement provides new stringent constraints for parton distribution functions.

2 data tables

Summary of the measured charge asymmetry results. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using MCFM interfaced with four different PDF models. The PDF uncertainties are estimated using the PDF reweighting technique. All values are in units of $10^{-3}$.

Covariance matrix for the systematic uncertainties on the asymmetry. All values are given in units of $10^{-6}$.


Measurement of the W gamma and Z gamma inclusive cross sections in pp collisions at sqrt(s) = 7 TeV and limits on anomalous triple gauge boson couplings

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 89 (2014) 092005, 2014.
Inspire Record 1251905 DOI 10.17182/hepdata.64877

Measurements of $W\gamma$ and $Z\gamma$ production in proton-proton collisions at $\sqrt{s}$ = 7 TeV are used to extract limits on anomalous triple gauge couplings. The results are based on data recorded by the CMS experiment at the LHC that correspond to an integrated luminosity of 5.0 inverse femtobarns. The cross sections are measured for photon transverse momenta $p_T^{\gamma} \gt$ 15 GeV, and for separations between photons and final-state charged leptons in the pseudorapidity-azimuthal plane of $\Delta R(l, \gamma) \gt$ 0.7 in $l \nu \gamma$ and $ll \gamma$ final states, where l refers either to an electron or a muon. A dilepton invariant mass requirement of $m_{ll} \gt$ 50 GeV is imposed for the Z$\gamma$ process. No deviations are observed relative to predictions from the standard model, and limits are set on anomalous WW$\gamma$, ZZ$\gamma$, and Z$\gamma\gamma$ triple gauge couplings.

2 data tables

Summary of the measured and predicted cross sections for p_T^gamma > 15 GeV/c for Wgamma production.

Summary of the measured and predicted cross sections for p_T^gamma > 15 GeV/c for Zgamma production.


Differential cross section measurements for the production of a W boson in association with jets in proton-proton collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 741 (2015) 12-37, 2015.
Inspire Record 1303894 DOI 10.17182/hepdata.67318

Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pt) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 inverse femtobarns. The measured cross sections are compared to predictions from Monte Carlo generators, MADGRAPH + PYTHIA and SHERPA, and to next-to-leading-order calculations from BLACKHAT + SHERPA. The differential cross sections are found to be in agreement with the predictions, apart from the pt distributions of the leading jets at high pt values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.

18 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.

The differential cross section measurement as a function of the transverse momentum of the first leading jet.

More…

Measurement of the W boson helicity in events with a single reconstructed top quark in pp collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 01 (2015) 053, 2015.
Inspire Record 1320561 DOI 10.17182/hepdata.66567

A measurement of the W boson helicity is presented, where the W boson originates from the decay of a top quark produced in pp collisions. The event selection, optimized for reconstructing a single top quark in the final state, requires exactly one isolated lepton (muon or electron) and exactly two jets, one of which is likely to originate from the hadronization of a bottom quark. The analysis is performed using data recorded at a center-of-mass energy of 8 TeV with the CMS detector at the CERN LHC in 2012. The data sample corresponds to an integrated luminosity of 19.7 inverse femtobarns. The measured helicity fractions are F[L] = 0.298 +/- 0.028 (stat) +\- 0.032 (syst), F[0] = 0.720 +/- 0.039 (stat) +/- 0.037 (syst), and F[R] = -0.018 +/- 0.019 (stat) +/- 0.011 (syst). These results are used to set limits on the real part of the tWb anomalous couplings, gL and gR.

3 data tables

Measurement of the W helicity fractions using the cos(theta*l) distribution in the muon channel. The helicity fractions corresponding to the longitudinal (F0) and left-handed (FL) polarizations are extracted from the fit while FR is obtained from the constraint of FL+FR+F0 = 1. The statistical correlation between the fit parameters is about -0.90.

Measurement of the W helicity fractions using the cos(theta*l) distribution in the electron channel. The helicity fractions corresponding to the longitudinal (F0) and left-handed (FL) polarizations are extracted from the fit while FR is obtained from the constraint of FL+FR+F0 = 1. The statistical correlation between the fit parameters is about -0.90.

Measurement of the W helicity fractions using the cos(theta*l) distribution in both electron and muon channels. The helicity fractions corresponding to the longitudinal (F0) and left-handed (FL) polarizations are extracted from the combined fit while FR is obtained from the constraint of FL+FR+F0 = 1. The total correlation between the fit parameters is about -0.80.


Measurement of associated W + charm production in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 02 (2014) 013, 2014.
Inspire Record 1256938 DOI 10.17182/hepdata.63113

Measurements are presented of the associated production of a W boson and a charm-quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The analysis is conducted with a data sample corresponding to a total integrated luminosity of 5 inverse femtobarns, collected by the CMS detector at the LHC. W boson candidates are identified by their decay into a charged lepton (muon or electron) and a neutrino. The W + c measurements are performed for charm-quark jets in the kinematic region $p_T^{jet} \gt$ 25 GeV, $|\eta^{jet}| \lt$ 2.5, for two different thresholds for the transverse momentum of the lepton from the W-boson decay, and in the pseudorapidity range $|\eta^{\ell}| \lt$ 2.1. Hadronic and inclusive semileptonic decays of charm hadrons are used to measure the following total cross sections: $\sigma(pp \to W + c + X) \times B(W \to \ell \nu)$ = 107.7 +/- 3.3 (stat.) +/- 6.9 (syst.) pb ($p_T^{\ell} \gt$ 25 GeV) and $\sigma(pp \to W + c + X) \times B(W \to \ell \nu)$ = 84.1 +/- 2.0 (stat.) +/- 4.9 (syst.) pb ($p_T^{\ell} \gt$ 35 GeV), and the cross section ratios $\sigma(pp \to W^+ + \bar{c} + X)/\sigma(pp \to W^- + c + X)$ = 0.954 +/- 0.025 (stat.) +/- 0.004 (syst.) ($p_T^{\ell} \gt$ 25 GeV) and $\sigma(pp \to W^+ + \bar{c} + X)\sigma(pp \to W^- + c + X)$ = 0.938 +/- 0.019 (stat.) +/- 0.006 (syst.) ($p_T^{\ell} \gt$ 35 GeV). Cross sections and cross section ratios are also measured differentially with respect to the absolute value of the pseudorapidity of the lepton from the W-boson decay. These are the first measurements from the LHC directly sensitive to the strange quark and antiquark content of the proton. Results are compared with theoretical predictions and are consistent with the predictions based on global fits of parton distribution functions.

9 data tables

The cross section, sigma(pp->W+c+X) x BR(W->lepton neutrino), for pT(lepton) > 25 GeV and > 35 GeV.

The normalized differential cross section as a function of the absolute value of the lepton pseudorapidity from the W-boson decay, 1/sigma(pp->W+c+X) dsigma(W+c+X)/d|eta|, for pT(lepton) > 25 GeV and > 35 GeV.

Correlation matrix for the normalized differential cross section as a function of the absolute value of the lepton pseudorapidity from the W-boson decay, 1/sigma(pp->W+c+X) dsigma(W+c+X)/d|eta|, for pT(lepton) > 25 GeV.

More…

Measurement of $W^+ W^-$ and $ZZ$ Production Cross Sections in $pp$ Collisions at $\sqrt{s} = 8 TeV$

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 721 (2013) 190-211, 2013.
Inspire Record 1215317 DOI 10.17182/hepdata.62680

The W+W- and ZZ production cross sections are measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS experiment at the LHC in data samples corresponding to an integrated luminosity of up to 5.3 inverse femtobarns. The measurements are performed in the leptonic decay modes W+W- to l' nu l'' nu and ZZ to 2l 2l', where l = e, mu and l'(l'') = e, mu, tau. The measured cross sections sigma(pp to W+W-) = 69.9 +/- 2.8 (stat.) +/- 5.6 (syst.) +/- 3.1 (lumi.) pb and sigma(pp to ZZ) = 8.4 +/- 1.0 (stat.) +/- 0.7 (syst.) +/- 0.4 (lumi.) pb, for both Z bosons produced in the mass region 60 < m[Z] < 120 GeV, are consistent with standard model predictions. These are the first measurements of the diboson production cross sections at sqrt(s) = 8 TeV.

2 data tables

The measured cross section for W+ W- production performed in the W --> LEPTONPRIME NU mode where LEPTONPRIME is electron, muon or tau.

The measured cross section for Z0Z0 production performed in the Z0 --> LEPTON LEPTONPRIME mode where LEPTON is E or MU and LEPTONPRIME is E, MU or TAU.


Measurement of inclusive W and Z boson production cross sections in pp collisions at $\sqrt{s}$ = 8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 112 (2014) 191802, 2014.
Inspire Record 1280200 DOI 10.17182/hepdata.62698

A measurement of total and fiducial inclusive W and Z boson production cross sections in pp collisions at $\sqrt{s}$ = 8 TeV is presented. Electron and muon final states are analyzed in a data sample collected with the CMS detector corresponding to an integrated luminosity of 18.2 +/- 0.5 inverse-picobarns. The measured total inclusive cross sections times branching fractions are $\sigma(pp \to WX) \times B(W \to l\nu)$ = 12.21 +/- 0.03 (stat) +/- 0.24 (syst) +/- 0.32 (lum) nb, and $\sigma(pp \to ZX) \times B(Z \to l^{+}l^{-})$ = 1.15 +/- 0.01 (stat) +/- 0.02 (syst) +/- 0.03 (lum) nb, for the dilepton mass in the range of 60 to 120 GeV. The measured values agree with next-to-next-to-leading-order QCD cross section calculations. Ratios of cross sections are reported with a precision of 2%. This is the first measurement of inclusive W and Z boson production in proton-proton collisions at $\sqrt{s}$ = 8 TeV.

6 data tables

W+ total and fiducial production cross sections times branching fractions.

W- total and fiducial production cross sections times branching fractions.

(W+ + W-) total and fiducial production cross sections times branching fractions.

More…

Measurement of the sum of WW and WZ production with W+dijet events in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 73 (2013) 2283, 2013.
Inspire Record 1193935 DOI 10.17182/hepdata.60489

A measurement of the inclusive WW+WZ diboson production cross section in proton-proton collisions is reported, based on events containing a leptonically decaying W boson and exactly two jets. The data sample, collected at sqrt(s) = 7 TeV with the CMS detector at the LHC, corresponds to an integrated luminosity of 5.0 inverse femtobarns. The measured value of the sum of the inclusive WW and WZ cross sections is sigma(pp to WW+WZ) = 68.9 +/- 8.7 (stat.) +/- 9.7 (syst.) +/- 1.5 (lum.) pb, consistent with the standard model prediction of 65.6 +/- 2.2 pb. This is the first measurement of WW+WZ production in pp collisions using this signature. No evidence for anomalous triple gauge couplings is found and upper limits are set on their magnitudes.

1 data table

Integrated cross section for inclusive WW + WZ production from the electron and muon channels combined.