Measurement of the properties of Higgs boson production at $\sqrt{s} = 13$ TeV in the $H\to\gamma\gamma$ channel using $139$ fb$^{-1}$ of $pp$ collision data with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 088, 2023.
Inspire Record 2104770 DOI 10.17182/hepdata.129799

Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be $1.04^{+0.10}_{-0.09}$. Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with a $W$ or $Z$ boson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with a $p$-value of $93\%$. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.

13 data tables

Cross-sections times H->yy branching ratio for ggF +bbH, VBF, VH, ttH, and tH production, normalized to their SM predictions. The values are obtained from a simultaneous fit to all categories. The theory uncertainties in the predictions include uncertainties due to missing higher-order terms in the perturbative QCD calculations and choices of parton distribution functions and value of alpha_s, as well as the H->yy branching ratio uncertainty.

Correlation matrix for the measurement of production cross-sections of the Higgs boson times the H->yy branching ratio.

Best-fit values and uncertainties for STXS parameters in each of the 28 regions considered, normalized to their SM predictions. The values for the gg->H process also include the contributions from bbH production.

More…

Search for the exotic decay of the Higgs boson into two light pseudoscalars with four photons in the final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 148, 2023.
Inspire Record 2130106 DOI 10.17182/hepdata.113445

A search for the exotic decay of the Higgs boson to a pair of light pseudoscalars, each of which subsequently decays into a pair of photons, is presented. The search uses data from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC that corresponds to an integrated luminosity of 132 fb$^{-1}$. The analysis probes pseudoscalar bosons with masses in the range 15-62 GeV, coming from the Higgs boson decay, which leads to four well-isolated photons in the final state. No significant deviation from the background-only hypothesis is observed. Upper limits are set on the product of the Higgs boson production cross section and branching fraction into four photons. The observed (expected) limits range from 0.80 (1.00) fb for a pseudoscalar boson mass of 15 GeV to 0.26 (0.24) fb for a mass of 62 GeV at 95% confidence level.

1 data table

Exclusion limits on the product of the production cross section and the branching fraction, as a function of the pseudoscalar mass hypothesis.


Search for the Higgs boson decay to a pair of electrons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 846 (2023) 137783, 2023.
Inspire Record 2129285 DOI 10.17182/hepdata.131539

A search is presented for the Higgs boson decay to a pair of electrons (e$^+$e$^-$) in proton-proton collisions at $\sqrt{s}$ = 13 TeV. The data set was collected with the CMS experiment at the LHC between 2016 and 2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis uses event categories targeting Higgs boson production via gluon fusion and vector boson fusion. The observed upper limit on the Higgs boson branching fraction to an electron pair is 3.0 $\times$ 10$^{-4}$ (3.0 $\times$ 10$^{-4}$ expected) at the 95% confidence level, which is the most stringent limit on this branching fraction to date.

9 data tables

Total expected number of signal events for $m_{H}=125.38$ GeV in analysis categories targeting ggH and VBF events, for an integrated luminosity of 138 fb$^{-1}$. The fractional contribution from each production mode to each category is also shown. The $\sigma_{\rm{eff}}$, defined as the smallest interval containing 68.3% of the $m_{ee}$ distribution, is listed for each analysis category. The final column shows the expected signal to background, where S and B are the numbers of expected signal and background events in a $\pm 1\sigma_{\rm{eff}}$ window centred on $m_{H}$.

Number of data events and the number of background events in the best-fit signal-plus-background model for the ggH Tag 0 category, in bins of $m_{ee}$. The number of signal events in the SM and at the observed limit are also provided in the same bins.

Number of data events and the number of background events in the best-fit signal-plus-background model for the ggH Tag 1 category, in bins of $m_{ee}$. The number of signal events in the SM and at the observed limit are also provided in the same bins.

More…

Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 046, 2023.
Inspire Record 2129461 DOI 10.17182/hepdata.128942

Measurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016-2018, and correspond to an integrated luminosity of 138 fb$^{-1}$. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant $\mathrm{t\bar{t}}$ background. A cross section of 79.2 $\pm$ 0.9 (stat) $^{+7.7}_{-8.0}$ (syst) $\pm$ 1.2 (lumi) pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.

24 data tables

The distribution of the BDT discriminant for events in the 1j1b region. The data (points) and the MC predictions (coloured histograms) after the fit are shown. The vertical bars on the points represent the statistical uncertainty in the data, and the hatched band the total uncertainty in the MC prediction. The lower panels display the ratio of the data to the sum of the MC (points) predictions after the fit, with the bands giving the corresponding uncertainties.

The distribution of the BDT discriminant for events in the 2j1b region. The data (points) and the MC predictions (coloured histograms) after the fit are shown. The vertical bars on the points represent the statistical uncertainty in the data, and the hatched band the total uncertainty in the MC prediction. The lower panels display the ratio of the data to the sum of the MC (points) predictions after the fit, with the bands giving the corresponding uncertainties.

The distribution of the Subleading jet $p_{T}$ for events in the 2j2b region. The data (points) and the MC predictions (coloured histograms) after the fit are shown. The vertical bars on the points represent the statistical uncertainty in the data, and the hatched band the total uncertainty in the MC prediction. The lower panels display the ratio of the data to the sum of the MC (points) predictions after the fit, with the bands giving the corresponding uncertainties.

More…

Version 4
Search for Higgs boson pair production in the two bottom quarks plus two photons final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 106 (2022) 052001, 2022.
Inspire Record 1995886 DOI 10.17182/hepdata.105864

Searches are performed for nonresonant and resonant di-Higgs boson production in the $b\bar{b}\gamma\gamma$ final state. The data set used corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No excess above the expected background is found and upper limits on the di-Higgs boson production cross sections are set. A 95% confidence-level upper limit of 4.2 times the cross section predicted by the Standard Model is set on $pp \rightarrow HH$ nonresonant production, where the expected limit is 5.7 times the Standard Model predicted value. The expected constraints are obtained for a background hypothesis excluding $pp \rightarrow HH$ production. The observed (expected) constraints on the Higgs boson trilinear coupling modifier $\kappa_{\lambda}$ are determined to be $[-1.5, 6.7]$ $([-2.4, 7.7])$ at 95% confidence level, where the expected constraints on $\kappa_{\lambda}$ are obtained excluding $pp \rightarrow HH$ production from the background hypothesis. For resonant production of a new hypothetical scalar particle $X$ ($X \rightarrow HH \rightarrow b\bar{b}\gamma\gamma$), limits on the cross section for $pp \to X \to HH$ are presented in the narrow-width approximation as a function of $m_{X}$ in the range $251 \leq m_{X} \leq 1000$ GeV. The observed (expected) limits on the cross section for $pp \to X \to HH$ range from 640 fb to 44 fb (391 fb to 46 fb) over the considered mass range.

124 data tables

The BDT distribution of the di-Higgs ggF signal for two different values of $\kappa_{\lambda}$ and the main backgrounds in the low mass region ($m^{*}_{b\bar{b}\gamma\gamma} < 350$ GeV). Distributions are normalized to unit area. The dotted lines denote the category boundaries. Events with a BDT score below 0.881 in the low mass region are discarded.

The BDT distribution of the di-Higgs ggF signal for two different values of $\kappa_{\lambda}$ and the main backgrounds in the low mass region ($m^{*}_{b\bar{b}\gamma\gamma} < 350$ GeV). Distributions are normalized to unit area. The dotted lines denote the category boundaries. Events with a BDT score below 0.881 in the low mass region are discarded.

The BDT distribution of the di-Higgs ggF signal for two different values of $\kappa_{\lambda}$ and the main backgrounds in the low mass region ($m^{*}_{b\bar{b}\gamma\gamma} < 350$ GeV). Distributions are normalized to unit area. The dotted lines denote the category boundaries. Events with a BDT score below 0.881 in the low mass region are discarded.

More…

Probing gluon spin-momentum correlations in transversely polarized protons through midrapidity isolated direct photons in $p^\uparrow+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.Lett. 127 (2021) 162001, 2021.
Inspire Record 1848987 DOI 10.17182/hepdata.131760

Studying spin-momentum correlations in hadronic collisions offers a glimpse into a three-dimensional picture of proton structure. The transverse single-spin asymmetry for midrapidity isolated direct photons in $p^\uparrow+p$ collisions at $\sqrt{s}=200$ GeV is measured with the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). Because direct photons in particular are produced from the hard scattering and do not interact via the strong force, this measurement is a clean probe of initial-state spin-momentum correlations inside the proton and is in particular sensitive to gluon interference effects within the proton. This is the first time direct photons have been used as a probe of spin-momentum correlations at RHIC. The uncertainties on the results are a fifty-fold improvement with respect to those of the one prior measurement for the same observable, from the Fermilab E704 experiment. These results constrain gluon spin-momentum correlations in transversely polarized protons.

2 data tables

The direct photon background fraction from Figure 1. This is the estimated fraction of photons in the isolated direct photon sample that came from either $\pi^0 \rightarrow \gamma \gamma$ or $\eta \rightarrow \gamma \gamma$ decays but the second decay photon is not measured and so these background photons are not eliminated by the tagging cut. These fractions are calculated for the PHENIX EMCal during the 2015 $p$+$p$ run

The transverse single-spin asymmetry of isolated direct photons for $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions with $\sqrt{s} = 200$ GeV. This data appears in both Figure 2 and Table I. An additional scale uncertainty of 3.4% due to the polarization uncertainty is not included.


Version 2
Search for W$\gamma$ resonances in proton-proton collisions at $\sqrt{s} =$ 13 TeV using hadronic decays of Lorentz-boosted W bosons

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 826 (2022) 136888, 2022.
Inspire Record 1869502 DOI 10.17182/hepdata.106162

A search for W$\gamma$ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$, collected with the CMS detector at the LHC in 2016-2018. The W$\gamma$ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background is observed. Model-specific upper limits at 95% confidence level on the product of the cross section and branching fraction to the W$\gamma$ channel are set. Limits for narrow resonances and for resonances with an intrinsic width equal to 5% of their mass, for spin-0 and spin-1 hypotheses, range between 0.17 fb at 6.0 TeV and 55 fb at 0.7 TeV. These are the most restrictive limits to date on the existence of such resonances over a large range of probed masses. In specific heavy scalar (vector) triplet benchmark models, narrow resonances with masses between 0.75 (1.15) and 1.40 (1.36) TeV are excluded for a range of model parameters. Model-independent limits on the product of the cross section, signal acceptance, and branching fraction to the W$\gamma$ channel are set for minimum W$\gamma$ mass thresholds between 1.5 and 8.0 TeV.

20 data tables

Fitted 4th order polynomials to the signal acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events falling within the analysis acceptance at the generator level to the number of signal events generated. The fitting function is $ A = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A$ is the acceptance and m is the signal mass.

Fitted 4th order polynomials to the signal acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events falling within the analysis acceptance at the generator level to the number of signal events generated. The fitting function is $ A = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A$ is the acceptance and m is the signal mass.

Fitted 4th order polynomials to the product of the signal efficiency and acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events passing full analysis cuts to the number of signal events generated. The fitting function is $ A \epsilon = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A \epsilon$ is the product of the signal efficiency and acceptance, m is the signal mass.

More…

Search for heavy resonances and quantum black holes in e$\mu$, e$\tau$, and $\mu\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2023) 227, 2023.
Inspire Record 2081834 DOI 10.17182/hepdata.127302

A search is reported for heavy resonances and quantum black holes decaying into e$\mu$, e$\tau$, and $\mu\tau$ final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016-2018 at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The e$\mu$, e$\tau$, and $\mu\tau$ invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant $\tau$ sneutrino production in $R$ parity violating supersymmetric models, heavy Z' gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant $\tau$ sneutrinos are excluded for masses up to 4.2 TeV in the e$\mu$ channel, 3.7 TeV in the e$\tau$ channel, and 3.6 TeV in the $\mu\tau$ channel. A Z' boson with lepton flavor violating couplings is excluded up to a mass of 5.0 TeV in the e$\mu$ channel, up to 4.3 TeV in the e$\tau$ channel, and up to 4.1 TeV in the $\mu\tau$ channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6 TeV in the e$\mu$ channel, 5.2 TeV in the e$\tau$ channel, and 5.0 TeV in the $\mu\tau$ channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays.

25 data tables

Mass distributions for the e$\mu$ channel. In addition to the observed data (black points) and SM prediction (filled histograms), expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and $\tau$ sneutrino mass of 1.6 TeV, a Z′ boson ($\mathcal{B}=0.1$) with a mass of 1.6 TeV , and the QBH signal expectation for $n=4$ and a threshold mass of 1.6 TeV. The bin width gradually increases with mass.

Mass distributions for the e$\tau$ channel. In addition to the observed data (black points) and SM prediction (filled histograms), expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and $\tau$ sneutrino mass of 1.6 TeV, a Z′ boson ($\mathcal{B}=0.1$) with a mass of 1.6 TeV , and the QBH signal expectation for $n=4$ and a threshold mass of 1.6 TeV. The bin width gradually increases with mass.

Mass distributions for the $\mu\tau$ channel. In addition to the observed data (black points) and SM prediction (filled histograms), expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and $\tau$ sneutrino mass of 1.6 TeV, a Z′ boson ($\mathcal{B}=0.1$) with a mass of 1.6 TeV , and the QBH signal expectation for $n=4$ and a threshold mass of 1.6 TeV. The bin width gradually increases with mass.

More…

General balance functions of identified charged hadron pairs of $(\pi,{\rm K},{\rm p})$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 833 (2022) 137338, 2022.
Inspire Record 1943964 DOI 10.17182/hepdata.132486

First measurements of balance functions (BFs) of all combinations of identified charged hadron $(\pi,\rm K,\rm p)$ pairs in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV recorded by the ALICE detector are presented. The BF measurements are carried out as two-dimensional differential correlators versus the relative rapidity ($\Delta y$) and azimuthal angle ($\Delta\varphi$) of hadron pairs, and studied as a function of collision centrality. The $\Delta\varphi$ dependence of BFs is expected to be sensitive to the light quark diffusivity in the quark$-$gluon plasma. While the BF azimuthal widths of all pairs substantially decrease from peripheral to central collisions, the longitudinal widths exhibit mixed behaviors: BFs of $\pi\pi$ and cross-species pairs narrow significantly in more central collisions, whereas those of $\rm KK$ and $\rm pp$ are found to be independent of collision centrality. This dichotomy is qualitatively consistent with the presence of strong radial flow effects and the existence of two stages of quark production in relativistic heavy-ion collisions. Finally, the first measurements of the collision centrality evolution of BF integrals are presented, with the observation that charge balancing fractions are nearly independent of collision centrality in Pb$-$Pb collisions. Overall, the results presented provide new and challenging constraints for theoretical models of hadron production and transport in relativistic heavy-ion collisions.

24 data tables

Balance function $B^{\pi\pi}$ measured in semicentral Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$ ($\pi,{\rm K}: 0.2 \leq p_{\rm T} \leq 2.0\;{\rm GeV}/c$; ${\rm p}: 0.5 \leq p_{\rm T} \leq 2.5\;{\rm GeV}/c$).

Balance function $B^{{\rm KK}}$ measured in semicentral Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$ ($\pi,{\rm K}: 0.2 \leq p_{\rm T} \leq 2.0\;{\rm GeV}/c$; ${\rm p}: 0.5 \leq p_{\rm T} \leq 2.5\;{\rm GeV}/c$).

Balance function $B^{{\rm p\bar{p}}}$ measured in semicentral Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$ ($\pi,{\rm K}: 0.2 \leq p_{\rm T} \leq 2.0\;{\rm GeV}/c$; ${\rm p}: 0.5 \leq p_{\rm T} \leq 2.5\;{\rm GeV}/c$).

More…

Version 2
Search for long-lived particles decaying to a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2023) 228, 2023.
Inspire Record 2083735 DOI 10.17182/hepdata.129518

An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb$^{-1}$. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred $\mu$m to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons Z$_\mathrm{D}$, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with $m_\mathrm{Z_D}$ greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for $c\tau$(Z$_\mathrm{D}$) (varying with $m_\mathrm{Z_D}$) between 0.03 and ${\approx}$ 0.5 mm, and above ${\approx}$ 0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.

150 data tables

Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.

Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.

Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2018 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 28$ GeV.

More…