Multi-particle azimuthal correlations for extracting event-by-event elliptic and triangular flow in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 99 (2019) 024903, 2019.
Inspire Record 1670164 DOI 10.17182/hepdata.150019

We present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at forward rapidity $1<|\eta|<3$ in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, as a function of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients $v_2\{2\}$, $v_2\{4\}$, $v_2\{6\}$, and $v_2\{8\}$, and triangular flow coefficients $v_3\{2\}$ and $v_3\{4\}$. Using the small-variance limit, we estimate the mean and variance of the event-by-event $v_2$ distribution from $v_2\{2\}$ and $v_2\{4\}$. In a complementary analysis, we also use a folding procedure to study the distributions of $v_2$ and $v_3$ directly, extracting both the mean and variance. Implications for initial geometrical fluctuations and their translation into the final state momentum distributions are discussed.

21 data tables

Centrality dependence of (a) $v_2${2} and (b) $v_2${4}. (a) The red points indicate no pseudorapidity gap whereas the magenta points indicate a pseudorapidity gap of |$\Delta\eta$| > 2.0. (b) The black points indicate $v_2${4} with no pseudorapidity gap, the blue points indicate a two-subevent method with |$\Delta\eta$| > 2.0 but where some short-range pairs are allowed, and the red points indicate a two-subevent method with |$\Delta\eta$| > 2.0 where no short-range pairs are allowed.

Centrality dependence of (a) $v_2${2} and (b) $v_2${4}. (a) The red points indicate no pseudorapidity gap whereas the magenta points indicate a pseudorapidity gap of |$\Delta\eta$| > 2.0. (b) The black points indicate $v_2${4} with no pseudorapidity gap, the blue points indicate a two-subevent method with |$\Delta\eta$| > 2.0 but where some short-range pairs are allowed, and the red points indicate a two-subevent method with |$\Delta\eta$| > 2.0 where no short-range pairs are allowed.

Centrality dependence of (a) $v_2${2} and (b) $v_2${4}. (a) The red points indicate no pseudorapidity gap whereas the magenta points indicate a pseudorapidity gap of |$\Delta\eta$| > 2.0. (b) The black points indicate $v_2${4} with no pseudorapidity gap, the blue points indicate a two-subevent method with |$\Delta\eta$| > 2.0 but where some short-range pairs are allowed, and the red points indicate a two-subevent method with |$\Delta\eta$| > 2.0 where no short-range pairs are allowed.

More…

Measurement of $\phi$-meson production at forward rapidity in $p$$+$$p$ collisions at $\sqrt{s}$=510 GeV and energy dependence of $\sigma_\phi$ from $\sqrt{s}$=200 GeV to 7 TeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 98 (2018) 092006, 2018.
Inspire Record 1628651 DOI 10.17182/hepdata.142337

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section of $\phi$(1020) meson production at forward rapidity in $p$$+$$p$ collisions at $\sqrt{s}=$510 GeV via the dimuon decay channel. The integrated cross section in the rapidity and $p_T$ ranges $1.2<|y|<2.2$ and $2<p_T<7$ GeV/$c$ is $\sigma_\phi=2.79 \pm 0.20\,{\rm (stat)} \pm 0.17\,{\rm (syst)} \pm 0.34\, {\rm (norm)} \times 10^{-2}$~mb. The energy dependence of $\sigma_\phi$ ($1.2<|y|<2.2$; $2<p_T<5$ GeV/$c$) is studied using the PHENIX measurements at $\sqrt{s}=$200 and 510 GeV and the Large-Hadron-Collider measurements at $\sqrt{s}=$2.76 and 7 TeV. The experimental results are compared to various event generator predictions (pythia6, pythia8, phojet, ampt, epos3, and epos-lhc).

3 data tables

The $\phi$-meson-production cross section d$\sigma_{\phi}$/dy in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV integrated in the transverse-momentum range 2 < $p_T$ < 7 GeV/$c$.

The $\phi$-meson-production cross section d$\sigma_{\phi}$/dy in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV integrated in the transverse-momentum range 2 < $p_T$ < 7 GeV/$c$.

The $\phi$-meson-differential-production cross section d${}^{2}$$\sigma_{\phi}/dp_T dy$ for 1.2 < |y| < 2.2 in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV.


Inclusive cross section and double-helicity asymmetry for $\pi^{0}$ production at midrapidity in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 93 (2016) 011501, 2016.
Inspire Record 1396712 DOI 10.17182/hepdata.144863

PHENIX measurements are presented for the cross section and double-helicity asymmetry ($A_{LL}$) in inclusive $\pi^0$ production at midrapidity from $p$$+$$p$ collisions at $\sqrt{s}=510$~GeV from data taken in 2012 and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The $\pi^{0}A_{LL}$ results follow an increasingly positive asymmetry trend with $p_T$ and $\sqrt{s}$ with respect to the predictions and are in excellent agreement with the latest global analysis results. This analysis incorporated earlier results on $\pi^0$ and jet $A_{LL}$, and suggested a positive contribution of gluon polarization to the spin of the proton $\Delta G$ for the gluon momentum fraction range $x>0.05$. The data presented here extend to a currently unexplored region, down to $x\sim0.01$, and thus provide additional constraints on the value of $\Delta G$. The results confirm the evidence for nonzero $\Delta G$ using a different production channel in a complementary kinematic region.

2 data tables

The neutral pion production cross section at midrapidity in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV as a function of $p_T$ and NLO pQCD calculations for theory scales $\mu = p_T/2$ (dotted line), $p_T$ (solid line) and 2$p_T$ (dashed line), with $\mu$ representing equal factorization, renormalization, and fragmentation scales.

$A_{LL}$ with point-to-point uncertainty $\delta A_{LL}$ vs $p_T$ for $\pi^0$ production at midrapidity in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV. Not included in the figure/table are the correlated for all points scale systematic uncertainty of 6.5% (scales both the values and point-to-point uncertainties by the same factor). Correlated relative luminosity (shift) uncertainity of 3.6e-4 (shifts all points by the same value).


Measurements of $\mu\mu$ pairs from open heavy flavor and Drell-Yan in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.D 99 (2019) 072003, 2019.
Inspire Record 1672015 DOI 10.17182/hepdata.144516

PHENIX reports differential cross sections of $\mu\mu$ pairs from semileptonic heavy-flavor decays and the Drell-Yan production mechanism measured in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV at forward and backward rapidity ($1.2<|\eta|<2.2$). The $\mu\mu$ pairs from $c\bar{c}$, $b\bar{b}$, and Drell-Yan are separated using a simultaneous fit to unlike- and like-sign muon pair spectra in mass and $p_T$. The azimuthal opening angle correlation between the muons from $c\bar{c}$ and $b\bar{b}$ decays and the pair-$p_T$ distributions are compared to distributions generated using {\sc pythia} and {\sc powheg} models, which both include next-to-leading order processes. The measured distributions for pairs from $c\bar{c}$ are consistent with {\sc pythia} calculations. The $c\bar{c}$ data presents narrower azimuthal correlations and softer $p_T$ distributions compared to distributions generated from {\sc powheg}. The $b\bar{b}$ data are well described by both models. The extrapolated total cross section for bottom production is $3.75{\pm}0.24({\rm stat}){\pm}^{0.35}_{0.50}({\rm syst}){\pm}0.45({\rm global})$[$\mu$b], which is consistent with previous measurements at the Relativistic Heavy Ion Collider in the same system at the same collision energy, and is approximately a factor of two higher than the central value calculated with theoretical models. The measured Drell-Yan cross section is in good agreement with next-to-leading-order quantum-chromodynamics calculations.

28 data tables

Inclusive $\mu^+ \mu^-$ pair mass distributions from $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV over the mass range from 0 to 15 GeV/$c^2$. Results are shown separately for the south and north muon arms. The data are compared to the cocktail of expected sources.

Inclusive like-sign $\mu \mu$ pair yield from $p$+$p$ collisions as a function of mass for the south and north muon arms and the ratio of data to expected sources.

Inclusive unlike-sign $\mu \mu$ pair yield from $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV as a function of mass in different $p_T$ slices for the south and north muon arms and the ratio of data to expected sources.

More…

Cross Section and Parity Violating Spin Asymmetries of $W^\pm$ Boson Production in Polarized $p+p$ Collisions at $\sqrt{s}=500$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 106 (2011) 062001, 2011.
Inspire Record 866922 DOI 10.17182/hepdata.143617

Large parity violating longitudinal single spin asymmetries A^{e^-}_L= -0.86^{+0.14}_{-0.30} and A^{e^+}_L= 0.88^{+0.12}_{-0.71} are observed for inclusive high transverse momentum electrons and positrons in polarized pp collisions at a center of mass energy of \sqrt{s}=500\ GeV with the PHENIX detector at RHIC. These e^{+/-} come mainly from the decay of W^{+/-} and Z^0 bosons, and the asymmetries directly demonstrate parity violation in the couplings of the W^{\pm} to the light quarks. The observed electron and positron yields were used to estimate W^\pm boson production cross sections equal to \sigma(pp \to W^+ X) \times BR(W^ \to \nu_e)= 144.1+/-21.2(stat)^{+3.4}_{-10.3}(syst) +/- 15%(norm) pb, and \sigma(pp \to W^{-}X) \times BR(W^\to e^-\bar{\nu_e}) = 31.7+/-12.1(stat)^{+10.1}_{-8.2}(syst)+/-15%(norm) pb.

3 data tables

The spectra of positive and negative candidates before and after an isolation cut. The computation of the background before the isolation cut is described in the text. The background band after the isolation cut is computed by scaling the background before the isolation cut by the isolation cut efficiency measured in the background region (12< $p_T$ <20GeV/$c$). The systematic errors include uncertainties in the photon conversion probability, the background normalization, and the background extrapoltion to $p_T$ > 30 GeV/$c$.

Background subtracted spectra of positron candidates taken from all counts compared to the spectrum of W and Z decays from an NLO calculation.

Background subtracted spectra of electron candidates taken from all counts compared to the spectrum of W and Z decays from an NLO calculation.


The polarized gluon contribution to the proton spin from the double helicity asymmetry in inclusive pi^0 production in polarized p+p collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 103 (2009) 012003, 2009.
Inspire Record 798465 DOI 10.17182/hepdata.143522

The double helicity asymmetry in neutral pion production for p_T = 1 to 12 GeV/c has been measured with the PHENIX experiment in order to access the gluon spin contribution, Delta-G, to the proton spin. Measured asymmetries are consistent with zero, and at a theory scale of \mu^2 = 4 GeV^2 give Delta-G^[0.02,0.3] = 0.1 to 0.2, with a constraint of -0.7 < Delta-G^[0.02,0.3] < 0.5 at Delta-chi^2 = 9 (~3 sigma) for our sampled gluon momentum fraction (x) range, 0.02 to 0.3. The results are obtained using predictions for our measured asymmetries generated from four representative fits to polarized deep inelastic scattering data. We also consider the dependence of the Delta-G constraint on the choice of theoretical scale, a dominant uncertainty in these predictions.

2 data tables

Asymmetry in $\pi^0$ production as a function of $p_T$. Not included in the table: 8.3% common scale uncertainty (scales both the value and and the stat. uncertainty by the same factor), and 7x10$^{-4}$ common shift uncertainty.

$\pi^0$ asymmetry, combined Run-5 and Run-6


Low-momentum direct photon measurement in Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 98 (2018) 054902, 2018.
Inspire Record 1672473 DOI 10.17182/hepdata.143521

We have measured direct photons for $p_T<5~$GeV/$c$ in minimum bias and 0\%--40\% most central events at midrapidity for Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The $e^{+}e^{-}$ contribution from quasi-real direct virtual photons has been determined as an excess over the known hadronic contributions in the $e^{+}e^{-}$ mass distribution. A clear enhancement of photons over the binary scaled $p$$+$$p$ fit is observed for $p_T<4$ GeV/$c$ in Cu$+$Cu data. The $p_T$ spectra are consistent with the Au$+$Au data covering a similar number of participants. The inverse slopes of the exponential fits to the excess after subtraction of the $p$$+$$p$ baseline are 285$\pm$53(stat)$\pm$57(syst)~MeV/$c$ and 333$\pm$72(stat)$\pm$45(syst)~MeV/$c$ for minimum bias and 0\%--40\% most central events, respectively. The rapidity density, $dN/dy$, of photons demonstrates the same power law as a function of $dN_{\rm ch}/d\eta$ observed in Au$+$Au at the same collision energy.

2 data tables

Direct photon fraction measured with the virtual photon method for different systems in $\sqrt{s_{NN}}$ = 200 GeV Cu+Cu collisions.

The direct photon spectra for Minimum Bias and 0-40% centrality in $\sqrt{s_{NN}}$ = 200 GeV Cu+Cu collisions.


Measurement of direct photon production in p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 012002, 2007.
Inspire Record 726259 DOI 10.17182/hepdata.143523

Cross sections for mid-rapidity production of direct photons in p+p collisions at the Relativistic Heavy Ion Collider (RHIC) are reported for 3 < p_T < 16 GeV/c. Next-to-leading order (NLO) perturbative QCD (pQCD) describes the data well for p_T > 5 GeV/c, where the uncertainties of the measurement and theory are comparable. We also report on the effect of requiring the photons to be isolated from parton jet energy. The observed fraction of isolated photons is well described by pQCD for p_T > 7 GeV/c.

3 data tables

Direct photon spectra with NLO pQCD calculations for three theory scales, $\mu$ and a comparison to the NLO pQCD calculations for $\mu$ = $p_T$.

Ratio of isolated direct photons to all direct photons from the $\pi^0$-tagging method.

Ratio of isolated direct photons to all direct photons from the $\pi^0$-tagging method.


Event Structure and Double Helicity Asymmetry in Jet Production from Polarized p+p Collisions at sqrt(s) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 84 (2011) 012006, 2011.
Inspire Record 870912 DOI 10.17182/hepdata.143462

We report on event structure and double helicity asymmetry ($A_LL$) of jet production in longitudinally polarized p+p collisions at $\sqrt{s}$=200 GeV. Photons and charged particles were measured at midrapidity $|\eta| < 0.35$ with the requirement of a high-momentum ($>2$ GeV/$c$) photon in each event. Measured event structure is compared with {\sc pythia} and {\sc geant} simulations. The shape of jets and the underlying event were well reproduced at this collision energy. For the measurement of jet $A_{LL}$, photons and charged particles were clustered with a seed-cone algorithm to obtain the cluster $p_T$ sum ($p_T^{\rm reco}$). The effect of detector response and the underlying events on $p_T^{\rm reco}$ was evaluated with the simulation. The production rate of reconstructed jets is satisfactorily reproduced with the NLO pQCD jet production cross section. For $4 < p_T^{\rm reco} < 12$ GeV/$c$ with an average beam polarization of $< P > = 49%$ we measured $A_{LL} = -0.0014 \pm 0.0037^{\rm stat}$ at the lowest $p_T^{\rm reco}$ bin (4-5 GeV/$c$) and $-0.0181 \pm 0.0282^{\rm stat}$ at the highest $p_T^{\rm reco}$ bin (10-12 GeV/$c$) with a beam polarization scale error of 9.4% and a $\pT$ scale error of 10%. Jets in the measured $p_T^{\rm reco}$ range arise primarily from hard-scattered gluons with momentum fraction $0.02 < x < 0.3$ according to {\sc pythia}. The measured $A_{LL}$ is compared with predictions that assume various $\Delta G(x)$ distributions based on the GRSV parameterization. The present result imposes the limit $-1.1 < \int_{0.02}^{0.3}dx \Delta G(x, \mu^2 = 1 {\rm GeV}^2) < 0.4$ at 95% confidence level or $\int_{0.02}^{0.3}dx \Delta G(x, \mu^2 = 1 {\rm GeV}^2) < 0.5$ at 99% confidence level.

3 data tables

The relative yields of $q$+$q$, $q$+$g$, and $g$+$g$ subprocesses in the PYTHIA+GEANT simulation.

The correction factor $\epsilon^j_{trig+acc}$ for high-$p_T$ photon trigger efficiency and acceptance effect.

Reconstructed-jet $A_{LL}$ as a function of $p_T^{reco}$.


Measurement of transverse-single-spin asymmetries for midrapidity and forward-rapidity production of hadrons in polarized p+p collisions at $\sqrt{s}=$200 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 90 (2014) 012006, 2014.
Inspire Record 1268155 DOI 10.17182/hepdata.143306

Measurements of transverse-single-spin asymmetries ($A_{N}$) in $p$$+$$p$ collisions at $\sqrt{s}=$62.4 and 200 GeV with the PHENIX detector at RHIC are presented. At midrapidity, $A_{N}$ is measured for neutral pion and eta mesons reconstructed from diphoton decay, and at forward rapidities, neutral pions are measured using both diphotons and electromagnetic clusters. The neutral-pion measurement of $A_{N}$ at midrapidity is consistent with zero with uncertainties a factor of 20 smaller than previous publications, which will lead to improved constraints on the gluon Sivers function. At higher rapidities, where the valence quark distributions are probed, the data exhibit sizable asymmetries. In comparison with previous measurements in this kinematic region, the new data extend the kinematic coverage in $\sqrt{s}$ and $p_T$, and it is found that the asymmetries depend only weakly on $\sqrt{s}$. The origin of the forward $A_{N}$ is presently not understood quantitatively. The extended reach to higher $p_T$ probes the transition between transverse momentum dependent effects at low $p_T$ and multi-parton dynamics at high $p_T$.

13 data tables

Neutral pion $A_N$ at $\sqrt{s} = 62.4$ GeV as a function of $x_F$ in pseudorapidity $3.1 < |\eta| < 3.5$, with statistical and systematic uncertainties.

Neutral pion $A_N$ at $\sqrt{s} = 62.4$ GeV as a function of $x_F$ in pseudorapidity $3.5 < |\eta| < 3.8$, with statistical and systematic uncertainties.

Neutral pion $A_N$ at $\sqrt{s}$ = 62.4 GeV as function of transverse momentum $p_T$.

More…