Charm production and fragmentation fractions at midrapidity in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2023-162, 2023.
Inspire Record 2697877 DOI 10.17182/hepdata.145759

Measurements of the production cross sections of prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{\ast +}}$, ${\rm D_s^+}$, ${\rm \Lambda_{c}^{+}}$, and ${\rm \Xi_{c}^{+}}$ charm hadrons at midrapidity in proton$-$proton collisions at $\sqrt{s}=13$ TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum ($p_{\rm T}$) are provided with improved precision and granularity. The ratios of $p_{\rm T}$-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-$x$ ($10^{-5}-10^{-4}$). The measurements of ${\rm \Lambda_{c}^{+}}$ (${\rm \Xi_{c}^{+}}$) baryon production extend the measured $p_{\rm T}$ intervals down to $p_{\rm T}=0(3)$~GeV$/c$. These measurements are used to determine the charm-quark fragmentation fractions and the ${\rm c\overline{c}}$ production cross section at midrapidity ($|y|<0.5$) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons ${\rm D^0}$, ${\rm D^+}$, ${\rm D_s^+}$, ${\rm \Lambda_{c}^{+}}$, ${\rm \Xi_{c}^{0}}$ and, for the first time, ${\rm \Xi_{c}^{+}}$, and of the strongly-decaying J/$psi$ mesons. The first measurements of ${\rm \Xi_{c}^{+}}$ and ${\rm \Sigma_{c}^{0,++}}$ fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e$^+$e$^-$ and ep collisions. The ${\rm c\overline{c}}$ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations.

39 data tables

$p_{\mathrm{T}}$-differential $\mathrm{D}^{0}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{0}\rightarrow\mathrm{K}^-\pi^+$: $(3.95 \pm 0.03)\%$. Global relative uncertainty on BR: $0.8\%$ Global relative uncertainty on luminosity: $1.6\%$

$p_{\mathrm{T}}$-differential $\mathrm{D}^{+}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{+}\rightarrow\mathrm{K}^-\pi^+\pi^+$: $(9.38 \pm 0.16)\%$. Global relative uncertainty on BR: $1.7\%$ Global relative uncertainty on luminosity: $1.6\%$

$p_{\mathrm{T}}$-differential $\mathrm{D}^{+}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{*+}\rightarrow\mathrm{D}^0(\rightarrow\mathrm{K}^-\pi^+)\pi^+$: $(2.67 \pm 0.03)\%$. Global relative uncertainty on BR: $1.1\%$ Global relative uncertainty on luminosity: $1.6\%$

More…

Measurement of the cross-sections of the electroweak and total production of a $Z \gamma$ pair in association with two jets in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 846 (2023) 138222, 2023.
Inspire Record 2663725 DOI 10.17182/hepdata.141625

This Letter presents the measurement of the fiducial and differential cross-sections of the electroweak production of a $Z \gamma$ pair in association with two jets. The analysis uses 140 fb$^{-1}$ of LHC proton-proton collision data taken at $\sqrt{s}$=13 TeV recorded by the ATLAS detector during the years 2015-2018. Events with a $Z$ boson candidate decaying into either an $e^+e^-$ or $\mu^+ \mu^-$ pair, a photon and two jets are selected. The electroweak component is extracted by requiring a large dijet invariant mass and a large rapidity gap between the two jets and is measured with an observed and expected significance well above five standard deviations. The fiducial $pp \rightarrow Z \gamma jj$ cross-section for the electroweak production is measured to be 3.6 $\pm$ 0.5 fb. The total fiducial cross-section that also includes contributions where the jets arise from strong interactions is measured to be $16.8^{+2.0}_{-1.8}$ fb. The results are consistent with the Standard Model predictions. Differential cross-sections are also measured using the same events and are compared with parton-shower Monte Carlo simulations. Good agreement is observed between data and predictions.

19 data tables

Post-fit mjj distributions in the mjj>500 GeV SR. The uncertainty band around the expectation includes all systematic uncertainties (including MC statistical uncertainty) and takes into account their correlations as obtained from the fit. The error bar around the data points represents the data statistical uncertainty. Events beyond the upper limit of the histogram are included in the last bin.

Post-fit mjj distributions in the mjj>500 GeV CR. The uncertainty band around the expectation includes all systematic uncertainties (including MC statistical uncertainty) and takes into account their correlations as obtained from the fit. The error bar around the data points represents the data statistical uncertainty. Events beyond the upper limit of the histogram are included in the last bin.

Post-fit mjj distributions in the mjj>150 GeV Extended SR. The uncertainty band around the expectation includes all systematic uncertainties (including MC statistical uncertainty) and takes into account their correlations as obtained from the fit. The error bar around the data points represents the data statistical uncertainty. Events beyond the upper limit of the histogram are included in the last bin.

More…

Version 2
Measurements of $Z\gamma+$jets differential cross sections in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 072, 2023.
Inspire Record 2614196 DOI 10.17182/hepdata.135460

Differential cross-section measurements of $Z\gamma$ production in association with hadronic jets are presented, using the full 139 fb$^{-1}$ dataset of $\sqrt{s}=13$ TeV proton-proton collisions collected by the ATLAS detector during Run 2 of the LHC. Distributions are measured using events in which the $Z$ boson decays leptonically and the photon is usually radiated from an initial-state quark. Measurements are made in both one and two observables, including those sensitive to the hard scattering in the event and others which probe additional soft and collinear radiation. Different Standard Model predictions, from both parton-shower Monte Carlo simulation and fixed-order QCD calculations, are compared with the measurements. In general, good agreement is observed between data and predictions from MATRIX and MiNNLO$_\text{PS}$, as well as next-to-leading-order predictions from MadGraph5_aMC@NLO and Sherpa.

50 data tables

Measured differential cross section as a function of observable $ p_{T}^{ll}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).

Measured differential cross section as a function of observable $ p_{T}^{ll} - p_{T}^{\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).

Measured differential cross section as a function of observable $ p_{T}^{ll} + p_{T}^{\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).

More…

Search for new Higgs bosons via same-sign top quark pair production in association with a jet in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-TOP-22-010, 2023.
Inspire Record 2719537 DOI 10.17182/hepdata.140528

A search is presented for new Higgs bosons in proton-proton (pp) collision events in which a same-sign top quark pair is produced in association with a jet, via the pp $\to$ tH/A $\to$ t$\mathrm{\bar{t}}$c and pp $\to$ tH/A $\to$ t$\mathrm{\bar{t}}$u processes. Here, H and A represent the extra scalar and pseudoscalar boson, respectively, of the second Higgs doublet in the generalized two-Higgs-doublet model (g2HDM). The search is based on pp collision data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Final states with a same-sign lepton pair in association with jets and missing transverse momentum are considered. New Higgs bosons in the 200-1000 GeV mass range and new Yukawa couplings between 0.1 and 1.0 are targeted in the search, for scenarios in which either H or A appear alone, or in which they coexist and interfere. No significant excess above the standard model prediction is observed. Exclusion limits are derived in the context of the g2HDM.

20 data tables

Pre-fit distributon for leading jet's CvsL variable.

Pre-fit distributon for leading jet's CvsB variable.

Post-fit distributon of BDT discriminants for $\rho_{tu}=1.0$ with $m_A$ = 350 GeV interfered with H.($m_A - m_H$ = 50 GeV)

More…

Study of flavor dependence of the baryon-to-meson ratio in proton-proton collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2023-159, 2023.
Inspire Record 2686623 DOI 10.17182/hepdata.145640

The production cross sections of ${\rm D^0}$ and $\Lambda^+_{\rm c}$ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity ($|y|<0.5$) by the ALICE Collaboration in proton-proton collisions at a center-of-mass energy $\sqrt{s}=13$ TeV. They are described within uncertainties by perturbative QCD calculations employing the fragmentation fractions of beauty quarks to baryons measured at forward rapidity by the LHCb Collaboration. The ${\rm b\overline{b}}$ production cross section per unit of rapidity at midrapidity, estimated from these measurements, is ${\rm d}\sigma_{\rm b\overline{b}}/{\rm d}y|_{|y|<0.5} = 83.1 \pm 3.5 (\mathrm{stat.}) \pm 5.4(\mathrm{syst.}) ^{+12.3}_{-3.2} (\mathrm{extrap.})\,\mu$b. The baryon-to-meson ratios are computed to investigate the hadronization mechanism of beauty quarks. The non-prompt $\Lambda^+_{\rm c}/{\rm D^0}$ production ratio has a similar trend to the one measured for the promptly produced charmed particles and to the p$/\pi^+$ and $\Lambda/{\rm K^0_S}$ ratios, suggesting a similar baryon-formation mechanism among light, strange, charm, and beauty hadrons. The $p_{\rm T}$-integrated non-prompt $\Lambda_{\rm c}/{\rm D^0}$ ratio is found to be significantly higher than the one measured in e$^+$e$^-$ collisions.

3 data tables

$p_{\mathrm{T}}$-differential D$^{0}$ production cross section in pp collisions at $\sqrt{s}$ = 13 TeV

$p_{\mathrm{T}}$-differential $\Lambda_\mathrm{c}^{+}$ production cross section in pp collisions at $\sqrt{s}$ = 13 TeV

$p_{\mathrm{T}}$-differential non-prompt $\Lambda_\mathrm{c}^{+}$/non-prompt D$^{0}$ ratio in pp collisions at $\sqrt{s}$ = 13 TeV


Measurement of the low-energy antitriton inelastic cross section

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 848 (2024) 138337, 2024.
Inspire Record 2675130 DOI 10.17182/hepdata.145643

In this Letter, the first measurement of the inelastic cross section for antitriton$-$nucleus interactions is reported, covering the momentum range of $0.8 \leq p < 2.4$ GeV/$c$. The measurement is carried out using data recorded with the ALICE detector in pp and Pb$-$Pb collisions at a centre-of-mass energy per nucleon of 13 TeV and 5.02 TeV, respectively. The detector material serves as an absorber for antitriton nuclei. The raw yield of (anti)triton nuclei measured with the ALICE apparatus is compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of (anti)particles through matter, allowing one to quantify the inelastic interaction probability in the detector material. This analysis complements the measurement of the inelastic cross section of antinuclei up to $A=3$ carried out by the ALICE Collaboration, and demonstrates the feasibility of the study of the isospin dependence of inelastic interaction cross section with the analysis techniques presented in this Letter.

10 data tables

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in exp. data.

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in MC (sigma_inel x 0.75).

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in MC (sigma_inel x 1.0).

More…

Version 2
Search for exclusive Higgs and $Z$ boson decays to $\omega\gamma$ and Higgs boson decays to $K^{*}\gamma$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 847 (2023) 138292, 2023.
Inspire Record 2626041 DOI 10.17182/hepdata.136515

Searches for the exclusive decays of the Higgs boson to an $\omega$ meson and a photon or a $K^{*}$ meson and a photon can probe flavour-conserving and flavour-violating Higgs boson couplings to light quarks, respectively. Searches for these decays, along with the analogous $Z$ boson decay to an $\omega$ meson and a photon, are performed with a $pp$ collision data sample corresponding to integrated luminosities of up to 134 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN Large Hadron Collider. The obtained 95% confidence-level upper limits on the respective branching fractions are ${\cal B}(H\rightarrow\omega\gamma)< 5.5\times 10^{-4}$, ${\cal B}(H\rightarrow K^{*}\gamma)< 2.2\times10^{-4}$ and ${\cal B}(Z\rightarrow \omega\gamma)<3.9\times 10^{-6}$. The limits for $H\rightarrow \omega\gamma$ and $Z\rightarrow \omega\gamma$ are 370 times and 140 times the Standard Model expected values, respectively. The result for $Z\rightarrow \omega\gamma$ corresponds to a two-orders-of-magnitude improvement over the limit obtained by the DELPHI experiment at LEP.

2 data tables

Numbers of observed and expected background events for the $m_{\mathcal{M}\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-4}$, respectively.

Expected and observed branching fraction limits at the 95% CL for $H/Z\rightarrow \omega\gamma$ and $H\rightarrow K^{*}\gamma$.


Search for pair production of third-generation leptoquarks decaying into a bottom quark and a $\tau$-lepton with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abeling, K. ; et al.
Eur.Phys.J.C 83 (2023) 1075, 2023.
Inspire Record 2637935 DOI 10.17182/hepdata.145072

A search for pair-produced scalar or vector leptoquarks decaying into a $b$-quark and a $\tau$-lepton is presented using the full LHC Run 2 (2015-2018) data sample of 139 fb$^{-1}$ collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV. Events in which at least one $\tau$-lepton decays hadronically are considered, and multivariate discriminants are used to extract the signals. No significant deviations from the Standard Model expectation are observed and 95% confidence-level upper limits on the production cross-section are derived as a function of leptoquark mass and branching ratio into the $\tau$-lepton. For scalar leptoquarks, masses below 1490 GeV are excluded assuming a 100% branching ratio, while for vector leptoquarks the corresponding limit is 1690 GeV (1960 GeV) in the minimal-coupling (Yang-Mills) scenario.

8 data tables

Acceptance $\times$ efficiency for the $\tau_\text{lep}\tau_\text{had}$ signal region assuming $\beta$ = 0.5 as a function of m$_\text{LQ}$.

Acceptance $\times$ efficiency for the $\tau_\text{had}\tau_\text{had}$ signal region assuming $\beta$ = 0.5 as a function of m$_\text{LQ}$.

The observed and expected 95% CL upper limits on the scalar LQ pair production cross-sections assuming B = 1 as a function of m$_\text{LQ}$.

More…

Version 3
Inclusive and differential cross-sections for dilepton $t\bar{t}$ production measured in $\sqrt{s}=13\;$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 07 (2023) 141, 2023.
Inspire Record 2648096 DOI 10.17182/hepdata.137888

Differential and double-differential distributions of kinematic variables of leptons from decays of top-quark pairs ($t\bar{t}$) are measured using the full LHC Run 2 data sample collected with the ATLAS detector. The data were collected at a $pp$ collision energy of $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 140 fb$^{-1}$. The measurements use events containing an oppositely charged $e\mu$ pair and $b$-tagged jets. The results are compared with predictions from several Monte Carlo generators. While no prediction is found to be consistent with all distributions, a better agreement with measurements of the lepton $p_{\text{T}}$ distributions is obtained by reweighting the $t\bar{t}$ sample so as to reproduce the top-quark $p_{\text{T}}$ distribution from an NNLO calculation. The inclusive top-quark pair production cross-section is measured as well, both in a fiducial region and in the full phase-space. The total inclusive cross-section is found to be \[ \sigma_{t\bar{t}} = 829 \pm 1\;(\textrm{stat}) \pm 13\;(\textrm{syst}) \pm 8\;(\textrm{lumi}) \pm 2\; (\textrm{beam})\ \textrm{pb}, \] where the uncertainties are due to statistics, systematic effects, the integrated luminosity and the beam energy. This is in excellent agreement with the theoretical expectation.

77 data tables

Definition of the fiducial phase space with the lepton candidate, electron $e$ and muon $\mu$, and jets.

Breakdown of systematic uncertainties in the measured fiducial cross-section. The impact of the top-quark mass on the cross-section is included in the table and not counted in the total uncertainty entry in the paper.

Data bootstrap post unfolding for the fiducial cross-section. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. All the provided numbers originate from pseudo-data, including the 0th entry, and are in units of [fb].

More…

Version 3
Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 104 (2021) 112010, 2021.
Inspire Record 1906174 DOI 10.17182/hepdata.104458

A search for charginos and neutralinos at the Large Hadron Collider is reported using fully hadronic final states and missing transverse momentum. Pair-produced charginos or neutralinos are explored, each decaying into a high-$p_{\text{T}}$ Standard Model weak boson. Fully-hadronic final states are studied to exploit the advantage of the large branching ratio, and the efficient background rejection by identifying the high-$p_{\text{T}}$ bosons using large-radius jets and jet substructure information. An integrated luminosity of 139 fb$^{-1}$ of proton-proton collision data collected by the ATLAS detector at a center-of-mass energy of 13 TeV is used. No significant excess is found beyond the Standard Model expectation. The 95% confidence level exclusion limits are set on wino or higgsino production with varying assumptions in the decay branching ratios and the type of the lightest supersymmetric particle. A wino (higgsino) mass up to 1060 (900) GeV is excluded when the lightest SUSY particle mass is below 400 (240) GeV and the mass splitting is larger than 400 (450) GeV. The sensitivity to high-mass wino and higgsino is significantly extended compared with the previous LHC searches using the other final states.

145 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Cutflow:</b> <a href="104458?version=3&table=Cut flows for the representative signals">table</a><br/><br/> <b>Boson tagging:</b> <ul> <li><a href="104458?version=3&table=%24W%2FZ%5Crightarrow%20qq%24%20tagging%20efficiency">$W/Z\rightarrow qq$ tagging efficiency</a> <li><a href="104458?version=3&table=%24W%2FZ%5Crightarrow%20qq%24%20tagging%20rejection">$W/Z\rightarrow qq$ tagging rejection</a> <li><a href="104458?version=3&table=%24Z%2Fh%20%5Crightarrow%20bb%24%20tagging%20efficiency">$Z/h\rightarrow bb$ tagging efficiency</a> <li><a href="104458?version=3&table=%24Z%2Fh%20%5Crightarrow%20bb%24%20tagging%20rejection">$Z/h\rightarrow bb$ tagging rejection</a> <li><a href="104458?version=3&table=%24W%5Crightarrow%20qq%24%20tagging%20efficiency%20(vs%20official%20WP)">$W\rightarrow qq$ tagging efficiency (vs official WP)</a> <li><a href="104458?version=3&table=%24W%5Crightarrow%20qq%24%20tagging%20rejection%20(vs%20official%20WP)">$W\rightarrow qq$ tagging rejection (vs official WP)</a> <li><a href="104458?version=3&table=%24Z%5Crightarrow%20qq%24%20tagging%20efficiency%20(vs%20official%20WP)">$Z\rightarrow qq$ tagging efficiency (vs official WP)</a> <li><a href="104458?version=3&table=%24Z%5Crightarrow%20qq%24%20tagging%20rejection%20(vs%20official%20WP)">$Z\rightarrow qq$ tagging rejection (vs official WP)</a> </ul> <b>Systematic uncertainty:</b> <a href="104458?version=3&table=Total%20systematic%20uncertainties">table</a><br/><br/> <b>Summary of SR yields:</b> <a href="104458?version=3&table=Data%20yields%20and%20background%20expectation%20in%20the%20SRs">table</a><br/><br/> <b>Expected background yields and the breakdown:</b> <ul> <li><a href="104458?version=3&table=Data%20yields%20and%20background%20breakdown%20in%20SR">CR0L / SR</a> <li><a href="104458?version=3&table=Data%20yields%20and%20background%20breakdown%20in%20CR%2FVR%201L(1Y)">CR1L / VR1L /CR1Y / VR1Y</a> </ul> <b>SR distributions:</b> <ul> <li><a href="104458?version=3&table=Effective mass distribution in SR-4Q-VV">SR-4Q-VV: Effective mass</a> <li><a href="104458?version=3&table=Leading large-$R$ jet mass distribution in SR-4Q-VV">SR-4Q-VV: Leading jet mass</a> <li><a href="104458?version=3&table=Leading large-$R$ jet $D_{2}$ distribution in SR-4Q-VV">SR-4Q-VV: Leading jet $D_{2}$</a> <li><a href="104458?version=3&table=Sub-leading large-$R$ jet mass distribution in SR-4Q-VV">SR-4Q-VV: Sub-leading jet mass</a> <li><a href="104458?version=3&table=Sub-leading large-$R$ jet $D_{2}$ distribution in SR-4Q-VV">SR-4Q-VV: Sub-leading jet $D_{2}$</a> <li><a href="104458?version=3&table=$m_{T2}$ distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: $m_{\textrm{T2}}$</a> <li><a href="104458?version=3&table=bb-tagged jet mass distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: bb-tagged jet mass</a> <li><a href="104458?version=3&table=Effective mass distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: Effective mass</a> <li><a href="104458?version=3&table=$m_{T2}$ distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: $m_{\textrm{T2}}$</a> <li><a href="104458?version=3&table=bb-tagged jet mass distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: bb-tagged jet mass</a> <li><a href="104458?version=3&table=Effective mass distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: Effective mass</a> </ul> <b>Exclusion limit:</b> <ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) simplified model (C1C1-WW)">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (W~, B~) simplified model (C1C1-WW)">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) simplified model (C1N2-WZ)">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) simplified model (C1N2-WZ)">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) simplified model (C1N2-Wh)">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) simplified model (C1N2-Wh)">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=0\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 0%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 0%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=25\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 25%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 25%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=50\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 50%">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 50%">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=75\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 75%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 75%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=100\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 100%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 100%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=50\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, B~) B(N2->ZN1) = 50%">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (H~, B~) B(N2->ZN1) = 50%">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{H})$ model ($\textrm{tan}\beta=10,~\mu>0$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, H~), tanb = 10, mu>0">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, H~), tanb = 10, mu>0">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model ($\textrm{tan}\beta=10,~\mu>0$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, W~), tanb = 10, mu>0">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (H~, W~), tanb = 10, mu>0">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{H})$ model ($\textrm{tan}\beta=10$) on ($\mu$,$M_{2}$) plane: <ul> <li><a href="104458?version=3&table=Exp limit on (W~, H~), tanb = 10, M2 vs mu">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, H~), tanb = 10, M2 vs mu">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model ($\textrm{tan}\beta=10$) on ($\mu$,$M_{2}$) plane: <ul> <li><a href="104458?version=3&table=Exp limit on (H~, W~), tanb = 10, M2 vs mu">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (H~, W~), tanb = 10, M2 vs mu">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{G})$ model: <ul> <li><a href="104458?version=3&table=Exp limit on (H~, G~)">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20G~)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(H~%2C%20G~)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (H~, G~)">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20G~)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20G~)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=100\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, a~) B(N1->Za~) = 100%">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (H~, a~) B(N1->Za~) = 100%">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=75\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, a~) B(N1->Za~) = 75%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (H~, a~) B(N1->Za~) = 75%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=50\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, a~) B(N1->Za~) = 50%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (H~, a~) B(N1->Za~) = 50%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=25\%$): <ul> <li>Expected limit : (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (H~, a~) B(N1->Za~) = 25%">Observed limit</a> </ul> </ul> <b>EWKino branching ratios:</b> <ul> <li>$(\tilde{W},~\tilde{H})$ model: <ul> <li><a href="104458?version=3&table=B(C2-%3EW%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow W\tilde{\chi}_{1,2}^{0})$</a> <li><a href="104458?version=3&table=B(C2-%3EZ%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow Z\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(C2-%3Eh%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow h\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N3-%3EW%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N3-%3EZ%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow Z\tilde{\chi}_{1,2}^{0})$</a> <li><a href="104458?version=3&table=B(N3-%3Eh%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow h\tilde{\chi}_{1,2}^{0})$</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model: <ul> <li><a href="104458?version=3&table=B(C2-%3EW%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow W\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=3&table=B(C2-%3EZ%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow Z\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(C2-%3Eh%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow h\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N2-%3EW%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N2-%3EZ%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=3&table=B(N2-%3Eh%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow h\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=3&table=B(N3-%3EW%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N3-%3EZ%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=3&table=B(N3-%3Eh%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow h\tilde{\chi}_{1}^{0})$</a> </ul> </ul> <b>Cross-section upper limit:</b> <ul> <li>Expected: <ul> <li><a href="104458?version=3&table=Expected cross-section upper limit on C1C1-WW">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW)</a> <li><a href="104458?version=3&table=Expected cross-section upper limit on C1N2-WZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ)</a> <li><a href="104458?version=3&table=Expected cross-section upper limit on C1N2-Wh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh)</a> <li><a href="104458?version=3&table=Expected cross-section upper limit on (H~, G~)">$(\tilde{H},~\tilde{G})$ model</a> </ul> <li>Observed: <ul> <li><a href="104458?version=3&table=Observed cross-section upper limit on C1C1-WW">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW)</a> <li><a href="104458?version=3&table=Observed cross-section upper limit on C1N2-WZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ)</a> <li><a href="104458?version=3&table=Observed cross-section upper limit on C1N2-Wh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh)</a> <li><a href="104458?version=3&table=Observed cross-section upper limit on (H~, G~)">$(\tilde{H},~\tilde{G})$ model</a> </ul> </ul> <b>Acceptance:</b> <ul> <li><a href="104458?version=3&table=Acceptance of C1C1-WW signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Acceptance of C1N2-WZ signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Acceptance of C1N2-WZ signals by SR-2B2Q-VZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Acceptance of C1N2-Wh signals by SR-2B2Q-Vh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Acceptance of N2N3-ZZ signals by SR-4Q-VV">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Acceptance of N2N3-ZZ signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Acceptance of N2N3-Zh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-Zh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Acceptance of N2N3-hh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-hh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Acceptance of (H~, G~) signals by SR-4Q-VV">$(\tilde{H},~\tilde{G})$ model in SR-4Q-VV</a> <li><a href="104458?version=3&table=Acceptance of (H~, G~) signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Acceptance of (H~, G~) signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-Vh</a> </ul> <b>Efficiency:</b> <ul> <li><a href="104458?version=3&table=Efficiency of C1C1-WW signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Efficiency of C1N2-WZ signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Efficiency of C1N2-WZ signals by SR-2B2Q-VZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Efficiency of C1N2-Wh signals by SR-2B2Q-Vh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Efficiency of N2N3-ZZ signals by SR-4Q-VV">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Efficiency of N2N3-ZZ signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Efficiency of N2N3-Zh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-Zh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Efficiency of N2N3-hh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-hh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Efficiency of (H~, G~) signals by SR-4Q-VV">$(\tilde{H},~\tilde{G})$ model in SR-4Q-VV</a> <li><a href="104458?version=3&table=Efficiency of (H~, G~) signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Efficiency of (H~, G~) signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-Vh</a> </ul>

Cut flows of some representative signals up to SR-4Q-VV, SR-2B2Q-VZ, and SR-2B2Q-Vh. One signal point from the $(\tilde{W},~\tilde{B})$ simplified models (C1C1-WW, C1N2-WZ, and C1N2-Wh) and $(\tilde{H},~\tilde{G})$ is chosen. The "preliminary event reduction" is a technical selection applied for reducing the sample size, which is fully efficient after the $n_{\textrm{Large}-R~\textrm{jets}}\geq 2$ selection.

The boson-tagging efficiency for jets arising from $W/Z$ bosons decaying into $q\bar{q}$ (signal jets) are shown. The signal jet efficiency of $W_{qq}$/$Z_{qq}$-tagging is evaluated using a sample of pre-selected large-$R$ jets ($p_{\textrm{T}}>200~\textrm{GeV}, |\eta|<2.0, m_{J} > 40~\textrm{GeV}$) in the simulated $(\tilde{W},\tilde{B})$ simplified model signal events with $\Delta m (\tilde{\chi}_{\textrm{heavy}},~\tilde{\chi}_{\textrm{light}}) \ge 400~\textrm{GeV}$. The jets are matched with generator-level $W/Z$-bosons by $\Delta R<1.0$ which decay into $q\bar{q}$. The efficiency correction factors are applied on the signal efficiency rejection for the $W_{qq}$/$Z_{qq}$-tagging. The systematic uncertainty is represented by the hashed bands.

More…