Jet energy spectrum and substructure in $e^+e^-$ collisions at 91.2 GeV with ALEPH Archived Data

Chen, Yi ; Badea, Anthony ; Baty, Austin ; et al.
JHEP 06 (2022) 008, 2022.
Inspire Record 1972346 DOI 10.17182/hepdata.129778

The first measurements of energy spectra and substructure of anti-$k_{T}$ jets in hadronic $Z^0$ decays in $e^+e^-$ collisions are presented. The archived $e^+e^-$ annihilation data at a center-of-mass energy of 91.2 GeV were collected with the ALEPH detector at LEP in 1994. In addition to inclusive jet and leading dijet energy spectra, various jet substructure observables are analyzed as a function of jet energy which includes groomed and ungroomed jet mass to jet energy ratios, groomed momentum sharing, and groomed jet radius. The results are compared with perturbative QCD calculations and predictions from the SHERPA, HERWIG v7.1.5, PYTHIA 6, PYTHIA 8, and PYQUEN event generators. The jet energy spectra agree with perturbative QCD calculations which include the treatment of logarithms of the jet radius and threshold logarithms. None of the event generators give a fully satisfactory description of the data.

7 data tables

The measured inclusive jet energy spectrum

The measured leading dijet energy spectrum

The measured leading dijet sum energy spectrum

More…

Beam energy dependence of net-$\Lambda$ fluctuations measured by the STAR experiment at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 024903, 2020.
Inspire Record 1776194 DOI 10.17182/hepdata.113523

The measurements of particle multiplicity distributions have generated considerable interest in understanding the fluctuations of conserved quantum numbers in the Quantum Chromodynamics (QCD) hadronization regime, in particular near a possible critical point and near the chemical freeze-out. We report the measurement of efficiency and centrality bin width corrected cumulant ratios ($C_{2}/C_{1}$, $C_{3}/C_{2}$) of net-$\Lambda$ distributions, in the context of both strangeness and baryon number conservation, as a function of collision energy, centrality and rapidity. The results are for Au + Au collisions at five beam energies ($\sqrt{s_{NN}}$ = 19.6, 27, 39, 62.4 and 200 GeV) recorded with the Solenoidal Tracker at RHIC (STAR). We compare our results to the Poisson and negative binomial (NBD) expectations, as well as to Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and Hadron Resonance Gas (HRG) model predictions. Both NBD and Poisson baselines agree with data within the statistical and systematic uncertainties. The ratios of the measured cumulants show no features of critical fluctuations. The chemical freeze-out temperatures extracted from a recent HRG calculation, which was successfully used to describe the net-proton, net-kaon and net-charge data, indicate $\Lambda$ freeze-out conditions similar to those of kaons. However, large deviations are found when comparing to temperatures obtained from net-proton fluctuations. The net-$\Lambda$ cumulants show a weak, but finite, dependence on the rapidity coverage in the acceptance of the detector, which can be attributed to quantum number conservation.

35 data tables

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 19.6 GeV. Values are shown with NBD, Poisson and UrQMD predictions. Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 27 GeV. Values are shown with NBD, Poisson and UrQMD predictions.Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 39 GeV. Values are shown with NBD, Poisson and UrQMD predictions.Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

More…

Beam energy dependence of rapidity-even dipolar flow in Au+Au collisions

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 784 (2018) 26-32, 2018.
Inspire Record 1669807 DOI 10.17182/hepdata.100168

New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient \vone, are presented for transverse momenta $\mathrm{p_T}$, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range $\mathrm{\sqrt{s_{_{NN}}}} = 7.7 - 200$ GeV. The measurements underscore the importance of momentum conservation and the characteristic dependencies on $\mathrm{\sqrt{s_{_{NN}}}}$, centrality and $\mathrm{p_T}$ are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and $\mathrm{p_T}$ dependencies of $\mathrm{v^{even}_{1}}$, as well as an observed similarity between its excitation function and that for $\mathrm{v_3}$, could serve as constraints for initial-state models. The $\mathrm{v^{even}_{1}}$ excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.

5 data tables

$v_{11}$ vs. $p_{T}^{b}$ for several selections of $p_{T}^{a}$ for 0-5 central Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV. The curve shows the result of the simultaneous fit.

Extracted values of $v^{even}_{1}$ vs. $p_{T}$ for 0-10 central Au+Au collisions for several values of $\sqrt{s_{_{NN}}}$ as indicated; the $v^{even}_{1}$ values are obtained via fits. The curve in panel (a) shows the result from a viscous hydrodynamically based predictions.

(a) Centrality dependence of $v^{even}_{1}$ for $0.4 \lt p_{T} \lt 0.7$ GeV/c for Au+Au collisions at $\sqrt{s_{_{NN}}} = 200, 39$ and $19.6$ GeV; (b) $K$ vs. $\langle N_{ch} \rangle^{-1}$ for the $v^{even}_{1}$ values shown in (a). The $\langle N_{ch} \rangle$ values correspond to the centrality intervals indicated in panel (a).

More…

Measurements of two-particle correlations in $e^+e^-$ collisions at 91 GeV with ALEPH archived data

Badea, Anthony ; Baty, Austin ; Chang, Paoti ; et al.
Phys.Rev.Lett. 123 (2019) 212002, 2019.
Inspire Record 1737859 DOI 10.17182/hepdata.99975

Measurements of two-particle angular correlations of charged particles emitted in hadronic $Z$ decays are presented. The archived $e^+e^-$ annihilation data at a center-of-mass energy of 91 GeV were collected with the ALEPH detector at LEP between 1992 and 1995. The correlation functions are measured over a broad range of pseudorapidity and full azimuth as a function of charged particle multiplicity. No significant long-range correlation is observed in either the lab coordinate analysis or the thrust coordinate analysis, where the latter is sensitive to a medium expanding transverse to the color string between the outgoing $q\bar{q}$ pair from $Z$ boson decays. The associated yield distributions in both analyses are in better agreement with the prediction from the PYTHIA v6.1 event generator than from HERWIG v7.1.5. They provide new insights to showering and hadronization modeling. These results serve as an important reference to the observed long-range correlation in proton-proton, proton-nucleus, and nucleus-nucleus collisions.

4 data tables

Correlated yield obtained from the ZYAM procedure as a function of |Deltaphi| averaged over 1.6 < |Deltaeta| < 3.2 in lab coordinate analyses.

Correlated yield obtained from the ZYAM procedure as a function of $|\Delta\phi |$ averaged over $1.6 < |\Delta\eta| < 3.2$ in thrust coordinate analyses.

Confidence limits on associated yield with lab coordinates as a function of avg N_trk^corr. NOTE in the PRL paper figure the lab data has been shifted right three units for clarity, but in this table the points are NOT shifted.

More…

Scaling Properties of Hyperon Production in Au+Au Collisions at sqrt(s_NN) = 200 GeV

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 98 (2007) 062301, 2007.
Inspire Record 718755 DOI 10.17182/hepdata.98928

We present the scaling properties of Lambda, Xi, Omega and their anti-particles produced at mid-rapidity in Au+Au collisions at RHIC at sqrt(s_NN) = 200 GeV. The yield of multi-strange baryons per participant nucleon increases from peripheral to central collisions more rapidly than the Lambda yield, which appears to correspond to an increasing strange quark density of matter produced. The value of the strange phase space occupancy factor gamma_s, obtained from a thermal model fit to the data, approaches unity for the most central collisions. We also show that the nuclear modification factors, R_CP, of Lambda and Xi are consistent with each other and with that of protons in the transverse momentum range 2.0 < p_T < 5.0 GeV/c. This scaling behaviour is consistent with a scenario of hadron formation from constituent quark degrees of freedom through quark recombination or coalescence.

6 data tables

Transverse momentum distributions of (a) $\Lambda(\overline{\Lambda})$ for $|y|<1.0$, (b) $\Xi^{-}(\overline{\Xi}^{+})$ for $|y|<0.75$ and (c) $\Omega^{-}+\overline{\Omega}^{+}$ for $|y|<0.75$ in Au+Au collisions at $\sqrt{s_{NN}}$ as a function of centrality. The $\Lambda$ spectra were corrected for weak decay of $\Xi$, $\Xi^{0}$ and $\Omega$. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the $\Lambda$, $\Xi^{-}$ and $\Omega^{-}+\overline{\Omega}^{+}$ data, the fits to the $\overline{\Lambda}$ and $\overline{\Xi}^{+}$ are omitted for clarity.

Transverse momentum distributions of (a) $\Lambda(\overline{\Lambda})$ for $|y|<1.0$, (b) $\Xi^{-}(\overline{\Xi}^{+})$ for $|y|<0.75$ and (c) $\Omega^{-}+\overline{\Omega}^{+}$ for $|y|<0.75$ in Au+Au collisions at $\sqrt{s_{NN}}$ as a function of centrality. The $\Lambda$ spectra were corrected for weak decay of $\Xi$, $\Xi^{0}$ and $\Omega$. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the $\Lambda$, $\Xi^{-}$ and $\Omega^{-}+\overline{\Omega}^{+}$ data, the fits to the $\overline{\Lambda}$ and $\overline{\Xi}^{+}$ are omitted for clarity.

Transverse momentum distributions of (a) $\Lambda(\overline{\Lambda})$ for $|y|<1.0$, (b) $\Xi^{-}(\overline{\Xi}^{+})$ for $|y|<0.75$ and (c) $\Omega^{-}+\overline{\Omega}^{+}$ for $|y|<0.75$ in Au+Au collisions at $\sqrt{s_{NN}}$ as a function of centrality. The $\Lambda$ spectra were corrected for weak decay of $\Xi$, $\Xi^{0}$ and $\Omega$. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the $\Lambda$, $\Xi^{-}$ and $\Omega^{-}+\overline{\Omega}^{+}$ data, the fits to the $\overline{\Lambda}$ and $\overline{\Xi}^{+}$ are omitted for clarity.

More…

Proton-Proton Interactions and Onset of Deconfinement

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Anticic, T. ; et al.
Phys.Rev.C 102 (2020) 011901, 2020.
Inspire Record 1772241 DOI 10.17182/hepdata.95182

The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.

12 data tables

K+/PI+ at y=0.

K+/PI+ at y=0.

<K+>/<PI+>.

More…

Suppression of away-side jet fragments with respect to the reaction plane in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 024904, 2011.
Inspire Record 872172 DOI 10.17182/hepdata.96510

Pair correlations between large transverse momentum neutral pion triggers (p_T=4--7 GeV/c) and charged hadron partners (p_T=3--7 GeV/c) in central (0--20%) and midcentral (20--60%) Au+Au collisions are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot dense matter. An out-of-plane trigger particle produces only 26+/-20% of the away-side pairs that are observed opposite of an in-plane trigger particle. In contrast, near-side jet fragments are consistent with no suppression or dependence on trigger orientation with respect to the reaction plane. These observations are qualitatively consistent with a picture of little near-side parton energy loss either due to surface bias or fluctuations and increased away-side parton energy loss due to a long path through the medium. The away-side suppression as a function of reaction-plane angle is shown to be sensitive to both the energy loss mechanism in and the space-time evolution of heavy-ion collisions.

22 data tables

Delta phi / Correlation Function 3-4 GeV/c partners

Delta phi / Correlation Function 3-4 GeV/c partners

$p^{a}_{T} = 3-4$ GeV/$c$

More…

Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 111 (2013) 032301, 2013.
Inspire Record 1207323 DOI 10.17182/hepdata.95877

The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.

5 data tables

Direct photon-hadron pair per-trigger yields vs Delta-phi (Au+Au and p+p)

Integrated per-trigger yields and I_AA vs xi

Integrated per-trigger yields and I_AA vs xi

More…

Update of the ALEPH non-strange spectral functions from hadronic $\tau$ decays

Davier, Michel ; Höcker, Andreas ; Malaescu, Bogdan ; et al.
Eur.Phys.J.C 74 (2014) 2803, 2014.
Inspire Record 1267648 DOI 10.17182/hepdata.77010

An update of the ALEPH non-strange spectral functions from hadronic $\tau$ decays is presented. Compared to the 2005 ALEPH publication, the main improvement is related to the use of a new method to unfold the measured mass spectra from detector effects. This procedure also corrects a previous problem in the correlations between the unfolded mass bins. Results from QCD studies and for the evaluation of the hadronic vacuum polarisation contribution to the anomalous muon magnetic moment are derived using the new spectral functions. They are found in agreement with published results based on the previous set of spectral functions.

23 data tables

Differential mass squared cross section for the $\pi\pi^0$ channel presented here as the cross section multipled by the bin width. The data are normalised to a branching ratio of 25.471%

Differential mass squared cross section for the $\pi 2\pi^0$ channel presented here as the cross section multipled by the bin width. The data are normalised to a branching ratio of 9.239%

Differential mass squared cross section for the $\pi 3\pi^0$ channel presented here as the cross section multipled by the bin width. The data are normalised to a branching ratio of 0.977%

More…

System size and energy dependence of near-side di-hadron correlations

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014903, 2012.
Inspire Record 943192 DOI 10.17182/hepdata.77720

Two-particle azimuthal ($\Delta\phi$) and pseudorapidity ($\Delta\eta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both $\Delta\phi$ and $\Delta\eta$, and the ridge, narrow in $\Delta\phi$ but broad in $\Delta\eta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV, but is found to be substantially smaller at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV than at $\sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ \langle N_{\mathrm{part}}\rangle$). Measurements of the ridge are compared to models.

40 data tables

Parameterizations of the transverse momentum dependence of the reconstruction efficiency of charged particles in the TPC in various collision systems, energies and centrality bins for the track selection cuts used in this analysis.

The raw correlation in $\Delta\eta$ for di-hadron correlations for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-12% central \Au collisions for $|\Delta\phi|<$ 0.78 before and after the track merging correction is applied. The data have been reflected about $\Delta\eta$=0.

Sample correlations in $\Delta\eta$ ($|\Delta\phi|<$ 0.78) for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-80% Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-95% $d$+Au at $\sqrt{s_{NN}}$ = 200 GeV, 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV, 40-80% Au+Au at $\sqrt{s_{NN}}$ = 200 GeV, and 0-12% central Au+Au at $\sqrt{s_{NN}}$ = 200 GeV. The data are averaged between positive and negative $\Delta\eta$. 5% systematic uncertainty due to track reconstruction efficiency not listed below.

More…