Version 2
Beauty production in pp collisions at $\sqrt{s}$ = 2.76 TeV measured via semi-electronic decays

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 738 (2014) 97-108, 2014.
Inspire Record 1296861 DOI 10.17182/hepdata.858

The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1<p_{\mathrm{T}}<10$ GeV/$c$, in pp collisions at $\sqrt{s} = $ 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\sigma_{\mathrm{b} \rightarrow \mathrm{e}} = 3.47\pm0.40(\mathrm{stat})^{+1.12}_{-1.33}(\mathrm{sys})\pm0.07(\mathrm{norm}) \mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total b$\bar{\mathrm{b}}$ production cross section, $\sigma_{\mathrm{b\bar{b}}} = 130\pm15.1(\mathrm{stat})^{+42.1}_{-49.8}(\mathrm{sys})^{+3.4}_{-3.1}(\mathrm{extr})\pm2.5(\mathrm{norm})\pm4.4(\mathrm{BR}) \mu$b.

16 data tables

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/$c$.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/c.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in EMCal triggered events in the electron transverse momentum range 4.5-6 GeV/$c$.

More…

Version 2
Measurement of electrons from beauty hadron decays in pp collisions at sqrt{s} = 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 721 (2013) 13-23, 2013.
Inspire Record 1126962 DOI 10.17182/hepdata.61625

The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range $1 < p_{\rm T} < 8$ Gev/$c$ with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy $\sqrt{s} = 7$ TeV using an integrated luminosity of 2.2 nb$^{-1}$. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs.

2 data tables

Double differential cross section for charm and beauty electron production as a function of transverse momentum. The systematic error does not include the error on the Luminosity (3.5%).

Double differential cross section for charm and beauty electron production as a function of transverse momentum. The systematic error does not include the error on the Luminosity (3.5%).


Version 2
J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.Lett. 101 (2008) 122301, 2008.
Inspire Record 776624 DOI 10.17182/hepdata.57327

Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.

27 data tables

J/PSI yield versus transverse momentum PT, at mid rapidity : -0.35<y<0.35, for a centrality range of 0-20%.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/PSI yield versus transverse momentum PT, at mid rapidity : -0.35<y<0.35, for a centrality range of 20-40%.

More…

Version 2
Erratum: Transverse momentum and centrality dependence of high-\pt\ non-photonic electron suppression in Au+Au collisions at \sqrtsNN\ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 98 (2007) 192301, 2007.
Inspire Record 721275 DOI 10.17182/hepdata.41842

The STAR collaboration at RHIC reports measurements of the inclusive yield of non-photonic electrons, which arise dominantly from semi-leptonic decays of heavy flavor mesons, over a broad range of transverse momenta ($1.2 < \pt < 10$ \gevc) in \pp, \dAu, and \AuAu collisions at \sqrtsNN = 200 GeV. The non-photonic electron yield exhibits unexpectedly large suppression in central \AuAu collisions at high \pt, suggesting substantial heavy quark energy loss at RHIC. The centrality and \pt dependences of the suppression provide constraints on theoretical models of suppression.

14 data tables

Non photonic electron yield in P+P collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

Non photonic electron yield in P+P collisions versus $p_{T}$. To obtain a differential cross-section in mb/(GeV$^2$), multiply listed data by 30.

Non photonic electron yield in minimum bias D+AU collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

More…

Inclusive electron nucleus scattering at high momentum transfer

Day, D.B. ; McCarthy, J.S. ; Meziani, Z.E. ; et al.
Phys.Rev.C 48 (1993) 1849-1863, 1993.
Inspire Record 365224 DOI 10.17182/hepdata.6186

The response function of nuclei in the quasielastic region at large momentum transfer (q≤10 fm−1) is measured for a series of nuclei, He4, C12, Al27, Fe56, and Au197, up to large values of the Bjorken scaling variables x<2.5.

23 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of Parity-Violating Asymmetry in Electron-Deuteron Inelastic Scattering

Wang, D. ; Pan, K. ; Subedi, R. ; et al.
Phys.Rev.C 91 (2015) 045506, 2015.
Inspire Record 1327482 DOI 10.17182/hepdata.72848

The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

5 data tables

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES I settings.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES II settings.

More…

Photoproduction of the $f_1(1285)$ Meson

The CLAS collaboration Dickson, R. ; Schumacher, R.A. ; Adhikari, K.P. ; et al.
Phys.Rev.C 93 (2016) 065202, 2016.
Inspire Record 1452551 DOI 10.17182/hepdata.72793

The $f_1(1285)$ meson with mass $1281.0 \pm 0.8$ MeV/$c^2$ and width $18.4 \pm 1.4$ MeV (FWHM) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the $\eta\pi^{+}\pi^{-}$, $K^+\bar{K}^0\pi^-$, and $K^-K^0\pi^+$ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the $\eta\pi^{+}\pi^{-}$ final-state Dalitz distribution are consistent with the axial-vector $J^P=1^+$ $f_1(1285)$ identity, rather than the pseudoscalar $0^-$ $\eta(1295)$. The production mechanism is more consistent with $s$-channel decay of a high-mass $N^*$ state, and not with $t$-channel meson exchange. Decays to $\eta\pi\pi$ go dominantly via the intermediate $a_0^\pm(980)\pi^\mp$ states, with the branching ratio $\Gamma(a_0\pi \text{ (no} \bar{K} K\text{)}) / \Gamma(\eta\pi\pi \text{(all)}) = 0.74\pm0.09$. The branching ratios $\Gamma(K \bar{K} \pi)/\Gamma(\eta\pi\pi) = 0.216\pm0.033$ and $\Gamma(\gamma\rho^0)/\Gamma(\eta\pi\pi) = 0.047\pm0.018$ were also obtained. The first is in agreement with previous data for the $f_1(1285)$, while the latter is lower than the world average.

1 data table

Differential cross section for $\gamma p \to f_1(1285) p \to \eta \pi^+ \pi^- p$ in nanobarns/steradian. The point-to-point uncertainties are given in separate statistical and systematic contributions.


Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 750 (2015) 64-71, 2015.
Inspire Record 1340691 DOI 10.17182/hepdata.72236

The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity $|y_{ee}|<1$ in minimum-bias Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened $\rho$ spectral function for $M_{ee}<1.1$ GeV/$c^{2}$. The integrated dielectron excess yield at $\sqrt{s_{NN}}$ = 19.6 GeV for $0.4<M_{ee}<0.75$ GeV/$c^2$, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at $\sqrt{s_{NN}}$ = 17.3 GeV. For $\sqrt{s_{NN}}$ = 200 GeV, the normalized excess yield in central collisions is higher than that at $\sqrt{s_{NN}}$ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is longer than those in peripheral collisions and at lower energies.

6 data tables

Reconstructed dielectron unlike-sign pairs, like-sign pairs and signal distributions, together with the signal to background ratio (S/B). All columns are presented as a function of dielectron invariant mass in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Dielectron invariant mass spectrum in the STAR acceptance (|$y_{ee}$| < 1, 0.2 < $p_T^e$ < 3 GeV/c, |$\eta^e$ | < 1) after efficiency correction in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Hadronic cocktail consisting of the decays of light hadrons and correlated decays of charm in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

More…

Measurement of electrons from heavy-flavour hadron decays in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 81-93, 2016.
Inspire Record 1394682 DOI 10.17182/hepdata.71455

The production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum ($p_{\rm T}$) in minimum-bias p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with ALICE at the LHC. The measurement covers the $p_{\rm T}$ interval $0.5<p_{\rm T}<12$ GeV/$c$ and the rapidity range $-1.06 < y_{\rm cms} < 0.14$ in the centre-of-mass reference frame. The contribution of electrons from background sources was subtracted using an invariant mass approach. The nuclear modification factor $R_{\rm pPb}$ was calculated by comparing the $p_{\rm T}$-differential invariant cross section in p-Pb collisions to a pp reference at the same centre-of-mass energy, which was obtained by interpolating measurements at $\sqrt{s}= 2.76$ TeV and $\sqrt{s} =7$ TeV. The $R_{\rm pPb}$ is consistent with unity within uncertainties of about 25%, which become larger for $p_{\rm T}$ below 1 GeV/$c$. The measurement shows that heavy-flavour production is consistent with binary scaling, so that a suppression in the high-$p_{\rm T}$ yield in Pb-Pb collisions has to be attributed to effects induced by the hot medium produced in the final state. The data in p-Pb collisions are described by recent model calculations that include cold nuclear matter effects.

2 data tables

Double-differential cross section for the production of electrons, i.e. (electron + positron)/2, from heavy-flavour hadron decays as a function of transverse momentum for minimum-bias p--Pb collisions in the rapidity interval $-1.065 < y_{\rm cms} < 0.135$. The systematic uncertainties do not include an additional normalization uncertainty of 3.7%.

Nuclear modification factor $R_{\text{pPb}}$ of electrons from heavy-flavour hadron decays as a function of transverse momentum for minimum-bias p--Pb collisions in the rapidity interval $-1.065 < y_{\rm cms} < 0.135$.


Measurement of charm and beauty production at central rapidity versus charged-particle multiplicity in proton-proton collisions at $\mathbf{\sqrt{{\textit s}}}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 09 (2015) 148, 2015.
Inspire Record 1366028 DOI 10.17182/hepdata.69529

Prompt D meson and non-prompt J/$\psi$ yields are studied as a function of the multiplicity of charged particles produced in inelastic proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=7$ TeV. The results are reported as a ratio between yields in a given multiplicity interval normalised to the multiplicity-integrated ones (relative yields). They are shown as a function of the multiplicity of charged particles normalised to the average value for inelastic collisions (relative charged-particle multiplicity). D$^0$, D$^+$ and D$^{*+}$ mesons are measured in five $p_{\rm T}$ intervals from 1 to 20 GeV/$c$ and for $|y|<0.5$ via their hadronic decays. The D-meson relative yield is found to increase with increasing charged-particle multiplicity. For events with multiplicity six times higher than the average multiplicity of inelastic collisions, a yield enhancement of a factor about 15 relative to the multiplicity-integrated yield in inelastic collisions is observed. The yield enhancement is independent of transverse momentum within the uncertainties of the measurement. The D$^0$-meson relative yield is also measured as a function of the relative multiplicity at forward pseudorapidity. The non-prompt J/$\psi$, i.e. the B hadron, contribution to the inclusive J/$\psi$ production is measured in the di-electron decay channel at central rapidity. It is evaluated for $p_{\rm T}>1.3$ GeV/$c$ and $|y|<0.9$, and extrapolated to $p_{\rm T}>0$. The fraction of non-prompt J/$\psi$ in the inclusive J/$\psi$ yields shows no dependence on the charged-particle multiplicity at central rapidity. Charm and beauty hadron relative yields exhibit a similar increase with increasing charged-particle multiplicity. The measurements are compared to PYTHIA 8, EPOS 3 and percolation calculations.

7 data tables

Average of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons relative yields for the sum of particle and antiparticle in several multiplicity and PT intervals for PP collisions at $\sqrt{s}=7$ TeV as a function of the relative charged-particle multiplicity at central rapidity. The values are reported together with their uncertainties, which are quoted in the the order: statistical, systematic and feed-down contribution uncertainties. The yields reported here are per inelastic event.

Average of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons relative yields for the sum of particle and antiparticle in several multiplicity and PT intervals for PP collisions at $\sqrt{s}=7$ TeV as a function of the relative charged-particle multiplicity at central rapidity. The values are reported together with their uncertainties, which are quoted in the the order: statistical, systematic and feed-down contribution uncertainties. The yields reported here are not corrected by the trigger selection efficiency, they are normalised to the visible cross section.

D$^{0}$-meson relative yields for the sum of particle and antiparticle in several multiplicity and PT intervals for pp collisions at $\sqrt{s}=7$ TeV as a function of the relative average multiplicity in the V0 detector, $N_{V0} \big/ \langle N_{V0} \rangle$. The yields reported here are normalised to the inelastic cross section.

More…