Version 2
Measurement of the Bottom contribution to non-photonic electron production in $p+p$ collisions at $\sqrt{s} $=200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 202301, 2010.
Inspire Record 860571 DOI 10.17182/hepdata.101352

The contribution of $B$ meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in $p+p$ collisions at $\sqrt{s} =$ 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted $B$ decay contribution is approximately 50% at a transverse momentum of $p_{T} \geq 5$ GeV/$c$. These measurements constrain the nuclear modification factor for electrons from $B$ and $D$ meson decays. The result indicates that $B$ meson production in heavy ion collisions is also suppressed at high $p_{T}$.

3 data tables

Distributions of the azimuthal angle between nonphotonic electrons and charged hadrons normalized per nonphotonic electron trigger. The trigger electron has (top) $2.5 < p_{T} < 3.5$ GeV/$c$ and (bottom) $5.5 < p_{T} < 6.5$ GeV/$c$. The curves represent PYTHIA calculations for $D$ (dotted curve) and $B$ (dashed curve) decays. The fit result is shown as the black solid curve.

(a) Background-subtracted invariant mass distribution of $K$ pairs requiring at least one nonphotonic electron trigger in the event. The solid line is a Gaussian fit to the data near the peak region. (b) Distribution of the azimuthal angle between nonphotonic electron (positron) trigger particles and $D^{0}$ ($\bar{D}^{0}$). The solid (dashed) line is a fit of the correlation function from PYTHIA (MC$@$NLO) simulations to the data points.

Transverse momentum dependence of the relative contribution from $B$ mesons ($r_{B}$) to the nonphotonic electron yields. Error bars are statistical and brackets are systematic uncertainties. The solid curve is the FONLL calculation [14]. Theoretical uncertainties are indicated by the dashed curves.


Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 032302, 2014.
Inspire Record 1255072 DOI 10.17182/hepdata.73343

We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.

46 data tables

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

More…

Measurements of 1 GeV proton total scattering cross section on H, He, $^6$Li, C, O and Pb targets

Igo, G.J. ; Friedes, J.L. ; Palevsky, H. ; et al.
Nucl.Phys.B 3 (1967) 181-187, 1967.
Inspire Record 1389662 DOI 10.17182/hepdata.33327

Total cross sections have been measured for H, He, 6 Li, C, O and Pb targets for 1 GeV incident energy protons. From the differential elastic scattering data published elsewhere, we also obtain the total elastic scattering and reaction cross sections for H, He, C and O. When our data are combined with other measurements in the same energy region, it is found that the total and reaction cross sections can be fit by the formulae σ T = 47 A 0.82 and σ R = 42 A 0.67 mb. It is also observed that the total and reaction cross sections for negative pions on nuclei can also be fit with these same A -dependencies.

1 data table

No description provided.


Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

Measurement of the Proton Proton Total Cross-Section and Small Angle Elastic Scattering at ISR Energies

Baksay, L. ; Baum, L. ; Böhm, A. ; et al.
Nucl.Phys.B 141 (1978) 1-28, 1978.
Inspire Record 136189 DOI 10.17182/hepdata.34829

Measurements of the total cross section have been performed at the ISR with c.m. energies between 23.5 GeV and 62.5 GeV. Two independent experimental methods have been applied, a measurement of total interaction rate and of small angle elastic scattering. Both experiments give consistent results showing that the total cross section increases by (11.8±1.5) % over the ISR energy range. This experiment has also measured the slope of the forward diffraction peak in elastic scattering at small momentum transfer. The elastic cross section shows the same relative rise as the total cross section, and the ratio λ of elastic to total cross section approaches a constant value of λ =0.178±0.003.

8 data tables

TOTAL CROSS SECTION FROM (INTERACTION RATE)/(LUMINOSITY). SYSTEMATIC ERROR <0.8 PCT.

TOTAL CROSS SECTION FROM APPLYING THE OPTICAL THEOREM TO SMALL ANGLE ELASTIC SCATTERING EXTRAPOLATED TO T=0.

More…

Measurement of Small Angle anti-Proton - Proton and Proton Proton Elastic Scattering at the CERN Intersecting Storage Rings

Amos, Norman A. ; Block, M.M. ; Bobbink, G.J. ; et al.
Nucl.Phys.B 262 (1985) 689-714, 1985.
Inspire Record 214689 DOI 10.17182/hepdata.33711

Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies s =30.6, 52.8 and 62.3 GeV at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at s =23.5 GeV . Using the optical theorem, total cross sections are obtained with an accuracy of about 0.5% for proton-proton scattering and about 1% for antiproton-proton scattering. The measurement of the interference of the Coulomb scattering and the hadronic scattering permits a determination of the ratio of the real-to-imaginary part of the forward hadronic scattering amplitude. Also presented are measurements of the hadronic slope parameter.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Comparison of Small Angle p$ \Bar{$p$}$ and p p Elastic Scattering at the {CERN} Intersecting Storage Rings

Amos, Norman A. ; Block, M.M. ; Bobbink, G.J. ; et al.
Phys.Lett.B 128 (1983) 343-348, 1983.
Inspire Record 190335 DOI 10.17182/hepdata.30667

Antiproton-proton and proton-proton small-angle elastic scattering have been measured for centre-of-mass energies √ s = 30.7 and 62.5 GeV at the CERN Intersecting Storage Rings (ISR). Antiproton-proton and proton-proton total cross sections are obtained using the optical theorem. The measurement of the Coulomb scattering and its interference with the nuclear scattering allows a determination of the ratio of the real-to-imaginary part of the forward nuclear scattering amplitude. Also presented are measurements for the nuclear slope parameter at √ s = 62.5 GeV. Our new results reinforce the conclusions drawn recently from our measurements at √ s = 52.8 GeV. In particular, the pp̄ total cross section is rising at ISR energies and should continue to rise well beyond these energies.

4 data tables

DATA REQUESTED FROM AUTHORS.

RESULTS OF FITS.

RESULTS OF FITS.

More…