Jets of nuclear matter in He-A(T) inelastic collisions at 4.5-A-GeV/c.

Besliu, C. ; Jipa, A. ; Zaharia, R. ; et al.
Eur.Phys.J.A 1 (1998) 65-75, 1998.
Inspire Record 467239 DOI 10.17182/hepdata.43769

The problem of the nuclear matter jets in nucleus-nucleus collisions at 4.5 A GeV/c is discussed. The global analysis of experimental data, namely the sphericity tensor, is used to evidence such jets.

3 data tables

No description provided.

No description provided.

No description provided.


On pion production intensities in hadron nucleus collisions.

Strugalska-Gola, E. ; Strugalski, Z. ; Sredniawa, B. ; et al.
JINR-E1-96-330, 1996.
Inspire Record 428911 DOI 10.17182/hepdata.39365

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the reaction C-12 (muon-neutrino, mu-) X near threshold

The LSND collaboration Albert, M. ; Athanassopoulos, C. ; Auerbach, L.B. ; et al.
Phys.Rev.C 51 (1995) 1065-1069, 1995.
Inspire Record 378770 DOI 10.17182/hepdata.25973

The reaction $~{12}{\rm C}(\nu_\mu,\mu~-) {\rm X}$ has been measured near threshold using a $\pi ~+$ decay-in-flight $\nu_\mu$ beam from the Los Alamos Meson Physics Facility and a massive liquid scintillator neutrino detector (LSND). In the energy region $123.7 < {\rm E}_\nu < 280$ MeV, the measured spectral shape is consistent with that expected from the Fermi Gas Model. However, the measured flux--averaged inclusive cross section ($(8.3 \pm 0.7 {\rm stat.} \pm 1.6 {\rm syst.}) \times 10~{-40} {\rm cm}~2$) is more than a factor of 2 lower than that predicted by the Fermi Gas Model and by a recent random phase approximation calculation.

1 data table

No description provided.


Characteristics of neutral pion production process in pi- Xe nuclear collisions at 3.5-GeV/c momentum

Strugalski, Z. ; Sredniawa, B. ; El-Sharkawy, S. ; et al.
JINR-E1-90-459, 1990.
Inspire Record 303170 DOI 10.17182/hepdata.39384

None

5 data tables

No description provided.

No description provided.

No description provided.

More…

A Comparative study of structure function measurements from hydrogen and deuterium

Bazizi, K. ; Wimpenny, S.J. ;
UCR-DIS-91-02, 1991.
Inspire Record 317333 DOI 10.17182/hepdata.18595

None

34 data tables

NA28 100 GeV data.

NA28 100 GeV data.

NA28 100 GeV data.

More…

Comparison of nucleus-nucleus interactions at 14.5-A/GeV - 200-A/GeV with the multistring model VENUS

Jain, P.L. ; Singh, G. ; Sengupta, K. ;
Phys.Rev.C 43 (1991) 2027-2030, 1991.
Inspire Record 314429 DOI 10.17182/hepdata.26179

None

6 data tables

No description provided.

No description provided.

No description provided.

More…

INCLUSIVE AND MULTIPLE CHARACTERISTICS OF CUMULATIVE PROTONS IN NUCLEUS-NUCLEUS INTERACTIONS AT 4.2-GeV/c PER NUCLEON

Gulkanian, G.R. ; Ravinovich, I.M. ; Cheplakov, A.P. ;
Sov.J.Nucl.Phys. 50 (1989) 259, 1989.
Inspire Record 267866 DOI 10.17182/hepdata.9447

None

11 data tables

No description provided.

No description provided.

No description provided.

More…

SEARCH FOR EFFECTS OF THE PARTICLE PRODUCTION PROCESS ON THE NUCLEON EMISSION AND TARGET FRAGMENT EVAPORATION IN COLLISIONS OF HADRONS WITH ATOMIC NUCLEI

Strugalski, Z. ;
JINR-E1-84-854, 1984.
Inspire Record 210058 DOI 10.17182/hepdata.39515

None

10 data tables

No description provided.

No description provided.

No description provided.

More…

Energy Dependence of Total Cross-sections for Neutrino and Anti-neutrino Interactions at Energies Below 35-{GeV}

Mukhin, A.I. ; Perelygin, V.F. ; Shestermanov, K.E. ; et al.
Sov.J.Nucl.Phys. 30 (1979) 528, 1979.
Inspire Record 141742 DOI 10.17182/hepdata.18187

None

2 data tables

No description provided.

No description provided.


Muon-Deuterium Deep Inelastic Scattering

Kim, I.J. ; Entenberg, A. ; Jostlein, H. ; et al.
Phys.Rev.Lett. 33 (1974) 551, 1974.
Inspire Record 1427 DOI 10.17182/hepdata.21238

We have measured deep inelastic muon-deuteron scattering in the range 0.4<Q2<3.4 and 1.6<ν<5.6 GeV. We have extracted the neutron structure function and find that νW2n differs significantly from νW2p, as also found in e−d scattering. To compare μ−d and e−d scattering we form the ratio r(Q2)=(νW2)μd(νW2)ed=N(1+Q2Λ2)−2 and find N=0.925±0.038 and 1Λ2=−0.019±0.016.

1 data table

No description provided.