Measurement of the inclusive jet cross-sections in proton--proton collisions at $\sqrt{s}= $8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2017) 020, 2017.
Inspire Record 1604271 DOI 10.17182/hepdata.76967

Inclusive jet production cross-sections are measured in proton--proton collisions at a centre-of-mass energy of $\sqrt{s}=$8 TeV recorded by the ATLAS experiment at the Large Hadron Collider at CERN. The total integrated luminosity of the analysed data set amounts to $20.2$ fb$^{-1}$. Double-differential cross-sections are measured for jets defined by the anti-$k_{t}$ jet clustering algorithm with radius parameters of $R=0.4$ and $R=0.6$ and are presented as a function of the jet transverse momentum, in the range between 70 GeV and 2.5 TeV and in six bins of the absolute jet rapidity, between 0 and 3.0. The measured cross-sections are compared to predictions of quantum chromodynamics, calculated at next-to-leading order in perturbation theory, and corrected for non-perturbative and electroweak effects. The level of agreement with predictions, using a selection of different parton distribution functions for the proton, is quantified. Tensions between the data and the theory predictions are observed.

12 data tables

rapidity bin 0 < |Y| < 0.5 anti-kt R=0.6

rapidity bin 0.5 < |Y| < 1.0 anti-kt R=0.6

rapidity bin 1.0 < |Y| < 1.5 anti-kt R=0.6

More…

Observation of the Z $\to\psi\ell^+\ell^-$ decay in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 141801, 2018.
Inspire Record 1677496 DOI 10.17182/hepdata.85743

This Letter presents the observation of the rare Z boson decay Z $\to\psi\ell^+\ell^-$. Here, $\psi$ represents contributions from direct J/$\psi$ and $\psi$(2S) $\to$ J/$\psi X$, $\ell^+\ell^-$ is a pair of electrons or muons, and the J/$\psi$ meson is detected via its decay to $\mu^+\mu^-$. The sample of proton-proton collision data, collected by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The signal is observed with a significance in excess of 5 standard deviations. After subtraction of the $\psi$(2S) $\to$ J/$\psi X$ contribution, the ratio of the branching fraction of the exclusive decay Z $\to\psi\ell^+\ell^-$ to the decay Z $\to\mu^+\mu^-\mu^+\mu^-$ within a fiducial phase space is measured to be $\mathcal{B}($Z $\to\psi\ell^+\ell^-) / \mathcal{B}($Z $\to\mu^+\mu^-\mu^+\mu^-) =$ 0.67 $\pm$ 0.18 (stat) $\pm$ 0.05 (syst).

1 data table

branching fraction ratio of Z->J/psi+2 leptons over Z->4muons for the phase space defined above


Constraints on the double-parton scattering cross section from same-sign W boson pair production in proton-proton collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2018) 032, 2018.
Inspire Record 1641267 DOI 10.17182/hepdata.89148

A first search for same-sign WW production via double-parton scattering is performed based on proton-proton collision data at a center-of-mass energy of 8 TeV using dimuon and electron-muon final states. The search is based on the analysis of data corresponding to an integrated luminosity of 19.7 fb$^{-1}$. No significant excess of events is observed above the expected single-parton scattering yields. A 95% confidence level upper limit of 0.32 pb is set on the inclusive cross section for same-sign WW production via the double-parton scattering process. This upper limit is used to place a 95% confidence level lower limit of 12.2 mb on the effective double-parton cross section parameter, closely related to the transverse distribution of partons in the proton. This limit on the effective cross section is consistent with previous measurements as well as with Monte Carlo event generator predictions.

1 data table

Expected and observed upper limits on the cross section for inclusive same-sign WW production via DPS


Version 2
Probing the quantum interference between singly and doubly resonant top-quark production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 152002, 2018.
Inspire Record 1677498 DOI 10.17182/hepdata.83544

This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a $W$ boson and a $b$-quark are significant. Events with exactly two leptons ($ee$, $\mu\mu$, or $e\mu$) and two $b$-tagged jets that satisfy a multi-particle invariant mass requirement are selected from $36.1$ fb$^{-1}$ of proton-proton collision data taken at $\sqrt{s}=13$ TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are significantly different from each other but are within $2\sigma$ of the data. State-of-the-art predictions that naturally incorporate interference effects provide the best description of the data in the measured region of phase space most sensitive to these effects. These results provide an important constraint on interference models and will guide future model development and tuning.

15 data tables

The minimax-mbl distribution in the three-b-tag region, constructed from the two b-jets with largest transverse momentum. The predicted tt+HF contribution from simulation is scaled to match observed data in this region. The hashed band indicates the uncertainty on the total number of predicted events, where the DR scheme is used to estimate the minor contribution from the tW process. Uncertainties include all statistical and systematic sources.

The detector-level minimax-mbl distribution, with signal selection and background estimation as described in the text. The total predicted events are shown for both the DR and DS definitions of the tW process, with uncertainties on the respective estimates indicated by separate error bars. Uncertainties include all statistical and systematic sources.

The unfolded, normalized differential minimax-mbl cross-section compared with theoretical models of the tt+tWb signal with various implementations of interference effects. The uncertainty of each data point includes all statistical and systematic sources, while uncertainties for each of the MC predictions correspond to variations of the PDF set and renormalization and factorization scales.

More…

Properties of $g\rightarrow b\bar{b}$ at small opening angles in $pp$ collisions with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052004, 2019.
Inspire Record 1711114 DOI 10.17182/hepdata.85697

The fragmentation of high-energy gluons at small opening angles is largely unconstrained by present measurements. Gluon splitting to $b$-quark pairs is a unique probe into the properties of gluon fragmentation because identified $b$-tagged jets provide a proxy for the quark daughters of the initial gluon. In this study, key differential distributions related to the $g\rightarrow b\bar{b}$ process are measured using 33 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS experiment at the LHC in 2016. Jets constructed from charged-particle tracks, clustered with the anti-$k_t$ jet algorithm with radius parameter $R = 0.2$, are used to probe angular scales below the $R=0.4$ jet radius. The observables are unfolded to particle level in order to facilitate direct comparisons with predictions from present and future simulations. Multiple significant differences are observed between the data and parton shower Monte Carlo predictions, providing input to improve these predictions of the main source of background events in analyses involving boosted Higgs bosons decaying into $b$-quarks.

4 data tables

Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\Delta R(b,b)$, as a function of $\Delta R(b,b)$ - the angle in $\eta$ and $\phi$ between the two b-tagged jets.

Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\Delta\theta_\text{gpp,gbb}/\pi$, the angle between production (gpp) and decay (gbb) planes ($\Delta\theta_\text{gpp,gbb}$).

Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/dz(p_\text{T})$, as a function of $z(p_\text{T})=p_\text{T,2}/(p_\text{T,1}+p_\text{T,2})$.

More…

Search for long-lived particles decaying into displaced jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 99 (2019) 032011, 2019.
Inspire Record 1704319 DOI 10.17182/hepdata.88880

A search for long-lived particles decaying into jets is presented. Data were collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search examines the distinctive topology of displaced tracks and secondary vertices. The selected events are found to be consistent with standard model predictions. For a simplified model in which long-lived neutral particles are pair produced and decay to two jets, pair production cross sections larger than 0.2 fb are excluded at 95% confidence level for a long-lived particle mass larger than 1000 GeV and proper decay lengths between 3 and 130 mm. Several supersymmetry models with gauge-mediated supersymmetry breaking or $R$-parity violation, where pair-produced long-lived gluinos or top squarks decay to several final-state topologies containing displaced jets, are also tested. For these models, in the mass ranges above 200 GeV, gluino masses up to 2300-2400 GeV and top squark masses up to 1350-1600 GeV are excluded for proper decay lengths approximately between 10 and 100 mm. These are the most restrictive limits to date on these models.

18 data tables

The distributions of vertex track multiplicity for data, simulated QCD multijet events, and simulated signal events. Data and simulated events are selected with the displaced-jet trigger. The offline $H_{T}$ is required to be larger than 400 $\mathrm{GeV}$, and the jets are required to have $p_{T}>50\ \mathrm{GeV}$ and $|\eta|<2.0$. Three benchmark signal distributions are shown (dashed lines) for the jet-jet model with $m_{X}=300\ \mathrm{GeV}$ and varying lifetimes. For visualization each signal process is given a cross section, $\sigma$, such that $\sigma\ 35.9\ \mathrm{fb}^{-1} = 1 \times 10^{6}$.

The distributions of vertex $L_{xy}$ significance for data, simulated QCD multijet events, and simulated signal events. Data and simulated events are selected with the displaced-jet trigger. The offline $H_{T}$ is required to be larger than 400 $\mathrm{GeV}$, and the jets are required to have $p_{T}>50\mathrm{GeV}$ and $|\eta|<2.0$. Three benchmark signal distributions are shown (dashed lines) for the jet-jet model with $m_{X}=300\ \mathrm{GeV}$ and varying lifetimes. For visualization each signal process is given a cross section, $\sigma$, such that $\sigma\ 35.9 \mathrm{fb}^{-1} = 1 \times 10^{6}$.

The distributions of cluster RMS for data, simulated QCD multijet events, and simulated signal events. Data and simulated events are selected with the displaced-jet trigger. The offline $H_{T}$ is required to be larger than 400 $\mathrm{GeV}$, and the jets are required to have $p_{T}>50\ \mathrm{GeV}$ and $|\eta|<2.0$. Three benchmark signal distributions are shown (dashed lines) for the jet-jet model with $m_{X}=300\ \mathrm{GeV}$ and varying lifetimes. For visualization each signal process is given a cross section, $\sigma$, such that $\sigma\ 35.9\ \mathrm{fb}^{-1} = 1 \times 10^{6}$.

More…

Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 048, 2019.
Inspire Record 1720442 DOI 10.17182/hepdata.84818

A measurement of the four-lepton invariant mass spectrum is made with the ATLAS detector, using an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider. The differential cross-section is measured for events containing two same-flavour opposite-sign lepton pairs. It exhibits a rich structure, with different mass regions dominated in the Standard Model by single $Z$ boson production, Higgs boson production, and $Z$ boson pair production, and non-negligible interference effects at high invariant masses. The measurement is compared with state-of-the-art Standard Model calculations, which are found to be consistent with the data. These calculations are used to interpret the data in terms of $gg\rightarrow ZZ \rightarrow 4\ell$ and $Z \rightarrow 4\ell$ subprocesses, and to place constraints on a possible contribution from physics beyond the Standard Model.

29 data tables

Measured and expected differential cross-section $\text{d}\sigma / \text{d} m_{4l}$ as a function of $m_{4l}$

Measured and expected differential cross-section $\text{d}\sigma / \text{d} m_{4l}$ as a function of $m_{4l}$ in bin of 0$< p_{T}^{4l} <$20 GeV

Measured and expected differential cross-section $\text{d}\sigma / \text{d} m_{4l}$ as a function of $m_{4l}$ in bin of 20$< p_{T}^{4l} <$50 GeV

More…

Version 2
Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 774 (2017) 682-705, 2017.
Inspire Record 1615207 DOI 10.17182/hepdata.81936

A measurement of vector boson scattering and constraints on anomalous quartic gauge couplings from events with two Z bosons and two jets are presented. The analysis is based on a data sample of proton-proton collisions at sqrt(s) = 13 TeV collected with the CMS detector and corresponding to an integrated luminosity of 35.9 inverse femtobarns. The search is performed in the fully leptonic final state ZZ to lll'l', where l, l' = e, mu. The electroweak production of two Z bosons in association with two jets is measured with an observed (expected) significance of 2.7 (1.6) standard deviations. A fiducial cross section for the electroweak production is measured to be sigma[EW](pp -> ZZjj -> lll'l'jj) = 0.40 -0.16 +0.21 (stat) -0.09 +0.13 (syst) fb, which is consistent with the standard model prediction. Limits on anomalous quartic gauge couplings are determined in terms of the effective field theory operators T0, T1, T2, T8, and T9. This is the first measurement of vector boson scattering in the ZZ channel at the LHC.

11 data tables

Measured and expected fiducial cross-sections.

Measured and expected fiducial cross-sections.

Observed and expected exclusion limits for the aQGC parameters at 95% CL, without any form factors.

More…

Electroweak production of two jets in association with a Z boson in proton-proton collisions at $\sqrt{s}= $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 589, 2018.
Inspire Record 1645246 DOI 10.17182/hepdata.85867

A measurement of the electroweak (EW) production of two jets in association with a Z boson in proton-proton collisions at $\sqrt{s} = $ 13 TeV is presented, based on data recorded in 2016 by the CMS experiment at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed in the $\ell\ell\mathrm{jj}$ final state with $\ell$ including electrons and muons, and the jets j corresponding to the quarks produced in the hard interaction. The measured cross section in a kinematic region defined by invariant masses $m_{\ell\ell} > $ 50 GeV, $m_{\mathrm{jj}} > $ 120 GeV, and transverse momenta $p_{\mathrm{T j}} > $ 25 GeV is $\sigma_\mathrm{EW}(\ell\ell\mathrm{jj})= $ 552 $\pm$ 19 (stat) $\pm$ 55 (syst) fb, in agreement with leading-order standard model predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. No evidence is found and limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are $-2.6 < c_{WWW}/\Lambda^2 < 2.6 $ TeV$^{-2}$ and $-8.4 < c_{W}/\Lambda^2 < 10.1 $ TeV$^{-2}$. The additional jet activity of events in a signal-enriched region is also studied, and the measurements are in agreement with predictions.

14 data tables

One-dimensional limits on the ATGC EFT parameters at 95% CL

One-dimensional limits on the ATGC effective Lagrangian (LEP parametrization) parameters at 95% CL

The best fit signal strength for dielectron, dimuon and combined dilepton channels. The measurement is performed in a kinematic region defined by invariant masses $m_{ll}~>~50$ GeV, $m_{jj}~>~120$ GeV, and transverse momenta $p_{Tj}~>~25$ GeV, where $l$ denotes electrons and muons, and $j$ - quarks produced in the hard interaction.

More…

Version 2
Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 97 (2018) 112003, 2018.
Inspire Record 1663958 DOI 10.17182/hepdata.85696

Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at $\sqrt{s} =$ 13 TeV are measured as a function of kinematic variables of the top quarks and the top quark-antiquark ($\mathrm{t}\overline{\mathrm{t}}$) system. In addition, kinematic variables and multiplicities of jets associated with the $\mathrm{t}\overline{\mathrm{t}}$ production are measured. This analysis is based on data collected by the CMS experiment at the LHC in 2016 corresponding to an integrated luminosity of 35.8 fb$^{-1}$. The measurements are performed in the lepton+jets decay channels with a single muon or electron and jets in the final state. The differential cross sections are presented at the particle level, within a phase space close to the experimental acceptance, and at the parton level in the full phase space. The results are compared to several standard model predictions that use different methods and approximations. The kinematic variables of the top quarks and the $\mathrm{t}\overline{\mathrm{t}}$ system are reasonably described in general, though none predict all the measured distributions. In particular, the transverse momentum distribution of the top quarks is more steeply falling than predicted. The kinematic distributions and multiplicities of jets are adequately modeled by certain combinations of next-to-leading-order calculations and parton shower models.

478 data tables

Absolute cross section at particle level as a function of $p_\text{T}(\text{t}_\text{h})$.

Absolute cross section at particle level as a function of $p_\text{T}(\text{t}_\text{h})$.

Covariance matrix of absolute cross section at particle level as a function of $p_\text{T}(\text{t}_\text{h})$.

More…