Measurement of the inclusive energy spectrum in the very forward direction in proton-proton collisions at sqrt(s)=13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2017) 046, 2017.
Inspire Record 1511284 DOI 10.17182/hepdata.76842

The differential cross section for inclusive particle production as a function of energy in proton-proton collisions at a center-of-mass energy of 13 TeV is measured in the very forward region of the CMS detector. The measurement is based on data collected with the CMS apparatus at the LHC, and corresponds to an integrated luminosity of 0.35 inverse microbarns. The energy is measured in the CASTOR calorimeter, which covers the pseudorapidity region -6.6 < eta < -5.2. The results are given as a function of the total energy deposited in CASTOR, as well as of its electromagnetic and hadronic components. The spectra are sensitive to the modeling of multiparton interactions in pp collisions, and provide new constraints for hadronic interaction models used in collider and in high energy cosmic ray physics.

6 data tables

Differential cross section as a function of the electromagnetic energy in the region −6.6 < eta < −5.2 for events with xi>10−6.

Differential cross section as a function of the total energy in the region −6.6 < eta < −5.2 for events with xi>10−6.

Differential cross section as a function of the hadronic energy in the region −6.6 < eta < −5.2 for events with xi>10−6.

More…

Measurement of the WZ production cross section in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 766 (2017) 268-290, 2017.
Inspire Record 1477805 DOI 10.17182/hepdata.76739

The WZ production cross section in proton-proton collisions at sqrt(s) = 13 TeV is measured with the CMS experiment at the LHC using a data sample corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in the leptonic decay modes WZ to l nu l' l', where l, l'= e, mu. The measured cross section for the range 60 < m[l'l'] < 120 GeV is sigma(pp to WZ) = 39.9 +/- 3.2 (stat) +2.9/-3.1 (syst) +/- 0.4 (theo) +/- 1.3 (lumi) pb, consistent with the standard model prediction.

2 data tables

The fiducial pp to WZ to lnul'l' cross section. The first systematic uncertainty is detector systematics and the second is luminosity uncertainty. The theoretical prediction is calculated with MCFM at NLO with NNPDF3.0 PDFs, with dynamic renormalization and factorization scales set to muR = muF = m[WZ]. The uncertainty is obtained by varying the factorization and renormalization scales independently up and down by a factor of two with the condition that 0.5 < muR/muF < 2.

The total pp to WZ cross section. The first systematic uncertainty is detector systematics and the second is luminosity uncertainty. The first theoretical prediction is calculated with MCFM at NLO with NNPDF3.0 PDFs, with dynamic renormalization and factorization scales set to muR = muF = m[WZ]. The second theoretical prediction is calculated with MATRIX at NNLO with fixed QCD scales set to muR = muF = 1/2 (m[Z] + m[W]) and with NNPDF3.0 PDFs. The uncertainty is obtained by varying the factorization and renormalization scales independently up and down by a factor of two with the condition that 0.5 < muR/muF < 2.


Search for supersymmetry in the multijet and missing transverse momentum final state in pp collisions at 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 758 (2016) 152-180, 2016.
Inspire Record 1422778 DOI 10.17182/hepdata.76545

A search for new physics is performed based on all-hadronic events with large missing transverse momentum produced in proton-proton collisions at sqrt(s) = 13 TeV. The data sample, corresponding to an integrated luminosity of 2.3 inverse femtobarns, was collected with the CMS detector at the CERN LHC in 2015. The data are examined in search regions of jet multiplicity, tagged bottom quark jet multiplicity, missing transverse momentum, and the scalar sum of jet transverse momenta. The observed numbers of events in all search regions are found to be consistent with the expectations from standard model processes. Exclusion limits are presented for simplified supersymmetric models of gluino pair production. Depending on the assumed gluino decay mechanism, and for a massless, weakly interacting, lightest neutralino, lower limits on the gluino mass from 1440 to 1600 GeV are obtained, significantly extending previous limits.

7 data tables

Expected prefit background and observed event counts for Njet = 4-6.

Expected prefit background and observed event counts for Njet = 7-8.

Expected prefit background and observed event counts for Njet > 9.

More…

Measurement of the production cross section of the W boson in association with two b jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 92, 2017.
Inspire Record 1484162 DOI 10.17182/hepdata.76543

The production cross section of a W boson in association with two b jets is measured using a sample of proton-proton collisions at sqrt(s) = 8 TeV collected by the CMS experiment at the CERN LHC. The data sample corresponds to an integrated luminosity of 19.8 inverse femtobarns. The W bosons are reconstructed via their leptonic decays, W to l nu, where l = mu or e. The fiducial region studied contains exactly one lepton with transverse momentum pt[l] > 30 GeV and pseudorapidity abs(eta[l]) < 2.1, with exactly two b jets with pt > 25 GeV and abs(eta) < 2.4 and no other jets with pt > 25 GeV and abs(eta) < 4.7. The cross section is measured to be sigma(pp to W (l nu)+ bb-bar) = 0.64 +/- 0.03 (stat) +/- 0.10 (syst) +/- 0.06 (theo) +/- 0.02 (lumi) pb, in agreement with standard model predictions.

1 data table

Wbb production cross section in pb.


Evidence for collectivity in pp collisions at the LHC

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 765 (2017) 193-220, 2017.
Inspire Record 1471287 DOI 10.17182/hepdata.76506

Measurements of two- and multi-particle angular correlations in pp collisions at sqrt(s) = 5, 7, and 13 TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 inverse picobarn (5 TeV), 6.2 inverse picobarns (7 TeV), and 0.7 inverse picobarns (13 TeV), were collected using the CMS detector at the LHC. The second-order (v[2]) and third-order (v[3]) azimuthal anisotropy harmonics of unidentified charged particles, as well as v[2] of K0 short and Lambda/anti-Lambda particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v[2] values of charged hadrons (mostly pions), K0 short, and Lambda/anti-Lambda, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pt of about 2 GeV/c. For 13 TeV data, the v[2] signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.

34 data tables

The second-order Fourier coefficients, $V_{2\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.

The second-order Fourier coefficients, $V_{2\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles, after correcting for back-to-back jet correlations, estimated from the 10 $\leq$ $N_{offline}^{trk}$ < 20 range.

The second-order Fourier coefficients, $V_{3\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.

More…

Measurement of the mass of the top quark in decays with a J/psi meson in pp collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 12 (2016) 123, 2016.
Inspire Record 1480862 DOI 10.17182/hepdata.75539

A first measurement of the top quark mass using the decay channel t to (W to l nu) (b to J/psi + X to mu+ mu- + X) is presented. The analysis uses events selected from the proton-proton collisions recorded with the CMS detector at the LHC at a center-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns, with 666 t t-bar and single top quark candidate events containing a reconstructed J/psi candidate decaying into an oppositely-charged muon pair. The mass of the (J/psi + l) system, where l is an electron or a muon from W boson decay, is used to extract a top quark mass of 173.5 +/- 3.0 (stat) +/- 0.9 (syst) GeV.

2 data tables

Number of selected events from simulations and observed in data. The uncertainties are statistical.

Summary of the impact of systematic uncertainties on the top quark mass according to the contributions from each source.


Event shapes and azimuthal correlations in Z + jets events in pp collisions at sqrt(s) =7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 722 (2013) 238-261, 2013.
Inspire Record 1209721 DOI 10.17182/hepdata.75374

Measurements of event shapes and azimuthal correlations are presented for events where a Z boson is produced in association with jets in proton-proton collisions. The data collected with the CMS detector at the CERN LHC at sqrt(s) = 7 TeV correspond to an integrated luminosity of 5.0 inverse femtobarns. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictions from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z + 1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD models.

18 data tables

Normalized DPhi(Z, j1) distributions for Njets >= 1.

Normalized DPhi(Z, j1) distributions for Njets >= 2.

Normalized DPhi(Z, j1) distributions for Njets >= 3.

More…

Measurement of the ZZ production cross section and Z to l+l-l'+l'- branching fraction in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 763 (2016) 280-303, 2016.
Inspire Record 1478600 DOI 10.17182/hepdata.75368

Four-lepton production in proton-proton collisions, pp to (Z/gamma*)(Z/gamma*) to l+l-l'+l'-, where l, l' = e or mu, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.6 inverse femtobarns. The ZZ production cross section, sigma(pp to ZZ) = 14.6 +1.9/-1.8 (stat) +0.5/-0.3 (syst) +/- 0.2 (theo) +/- 0.4 (lumi) pb, is measured for events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 < m[l+l-], m[l'+l'-] < 120 GeV. The Z boson branching fraction to four leptons is measured to be B(Z to l+l-l'+l'-) = 4.9 +0.8/-0.7 (stat) +0.3/-0.2 (syst) +0.2/-0.1 (theo) +/- 0.1 (lumi) x E-6 for the four-lepton invariant mass in the range 80 < m[l+l-l'+l'-] < 100 GeV and dilepton mass m[l+l-] > 4 GeV for all opposite-sign, same-flavor lepton pairs. The results are in agreement with standard model predictions.

5 data tables

The (P P to Z Z to l+l-l'+l'-) fiducial cross section. The first systematic uncertainty is detector systematics, the second is luminosity uncertainty. The theoretical prediction is POWHEG generated at NLO plus the gluon-gluon initial state contribution from MCFM, using NNPDF3.0 PDFs and scales mu_F = mu_R = 0.5m[l+l-l'+l'-].

The (P P to Z to l+l-l'+l'-) fiducial cross section. The first systematic uncertainty is detector systematics, the second is luminosity uncertainty. The theoretical prediction is POWHEG generated at NLO using NNPDF3.0 PDFs and scales mu_F = mu_R = m[l+l-l'+l'-].

The total (P P to Z) cross section times the (Z to l+l-l'+l'-) branching ratio. The first systematic uncertainty is detector systematics, the second is theoretical uncertainty, and the third is luminosity uncertainty.

More…

Studies of inclusive four-jet production with two b-tagged jets in proton-proton collisions at 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 112005, 2016.
Inspire Record 1486238 DOI 10.17182/hepdata.75375

Measurements are presented of the cross section for the production of at least four jets, of which at least two originate from b quarks, in proton-proton collisions. Data collected with the CMS detector at the LHC at a center-of-mass energy of 7 TeV are used, corresponding to an integrated luminosity of 3 inverse picobarns. The cross section is measured as a function of the jet transverse momentum for pt > 20 GeV, and of the jet pseudorapidity for abs(eta) < 2.4 (b jets), 4.7 (untagged jets). The correlations in azimuthal angle and pt between the jets are also studied. The inclusive cross section is measured to be sigma(pp to 2 b + 2 j + X) = 69 +/- 3 (stat) +/- 24 (syst) nb. The eta and pt distributions of the four jets and the correlations between them are well reproduced by event generators that combine perturbative QCD calculations at next-to-leading-order accuracy with contributions from parton showers and multiparton interactions.

12 data tables

The measured fiducial cross section. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, sample purity, model dependence and jet energy resolution and trigger efficiency correction.

Differential cross section as a function of the transverse momentum PT of the leading b-jet. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, sample purity, model dependence and jet energy resolution and trigger efficiency correction.

Differential cross section as a function of the transverse momentum PT of the subleading b-jet. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, sample purity, model dependence and jet energy resolution and trigger efficiency correction.

More…

Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 13, 2016.
Inspire Record 1391147 DOI 10.17182/hepdata.75470

A measurement is presented of differential cross sections for the Higgs boson (H) production in pp collisions at sqrt(s) = 8 TeV. The analysis exploits the H to gamma gamma decay in data corresponding to an integrated luminosity of 19.7 inverse femtobarns collected by the CMS experiment at the LHC. The cross section is measured as a function of the kinematic properties of the diphoton system and of the associated jets. Results corrected for detector effects are compared with predictions at next-to-leading order and next-to-next-to-leading order in perturbative quantum chromodynamics, as well as with predictions beyond the standard model. For isolated photons with pseudorapidities abs(eta) < 2.5, and with the photon of largest and next-to-largest transverse momentum (pt[gamma]) divided by the diphoton mass m[gamma-gamma] satisfying the respective conditions of pt[gamma] / m[gamma-gamma] > 1/3 and > 1/4, the total fiducial cross section is 32 +/- 10 fb.

13 data tables

Values of the pp $\to$ H $\to \gamma\gamma$ differential cross sections as a function of kinematic observables as measured in data and as predicted in SM simulations. For each observable the fit to $m_{\gamma\gamma}$ is performed simultaneously in all the bins. Since the signal mass is profiled for each observable, the best fit $\hat{m}_{\rm{H}}$ varies from observable to observable.

Values of the pp $\to$ H $\to \gamma\gamma$ differential cross sections as a function of $p_{\rm{T}}^{\gamma\gamma}$ as measured in data. For each observable the fit to $m_{\gamma\gamma}$ is performed simultaneously in all the bins. Since the signal mass is profiled for each observable, the best fit $\hat{m}_{\rm{H}}$ varies from observable to observable.

Values of the pp $\to$ H $\to \gamma\gamma$ differential cross sections as a function of |$\cos\theta^{\ast}$| as measured in data. For each observable the fit to $m_{\gamma\gamma}$ is performed simultaneously in all the bins. Since the signal mass is profiled for each observable, the best fit $\hat{m}_{\rm{H}}$ varies from observable to observable.

More…