Photoproduction of Isolated Photons, Inclusively and with a Jet, at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Lett.B 730 (2014) 293-301, 2014.
Inspire Record 1267651 DOI 10.17182/hepdata.64777

The photoproduction of isolated photons, both inclusive and together with a jet, has been measured with the ZEUS detector at HERA using an integrated luminosity of $374\, \mathrm{pb}^{-1}$. Differential cross sections are presented in the isolated-photon transverse-energy and pseudorapidity ranges $6 < E_T^\gamma < 15$ GeV and $-0.7 < \eta^\gamma < 0.9,$ and for jet transverse-energy and pseudorapidity ranges $4 < E_T^{jet} < 35$ GeV and $-1.5 < \eta^{jet} < 1.8,$ for exchanged-photon virtualities $Q^2 < 1$ GeV$^2$. Differential cross sections are also presented for inclusive isolated-photon production as functions of the transverse energy and pseudorapidity of the photon. Higher-order theoretical calculations are compared to the results.

7 data tables

The measured differential photoproduction cross section DSIG/DET(gamma) for isolated inclusive photons.

The measured differential photoproduction cross section DSIG/DETARAP(gamma) for isolated inclusive photons.

The measured differential photoproduction cross section DSIG/DET(gamma) for isolated photons accompanied by a jet.

More…

Measurement of proton and neutron electromagnetic form-factors at squared four momentum transfers up to 3-GeV/c$^2$

Bartel, W. ; Busser, F.W. ; Dix, W.r. ; et al.
Nucl.Phys.B 58 (1973) 429-475, 1973.
Inspire Record 83685 DOI 10.17182/hepdata.69173

Electron-proton elastic scattering cross sections have been measured at squared four-momentum transfers q 2 of 0.67, 1.00, 1.17, 1.50, 1.75, 2.33 and 3.00 (GeV/ c ) 2 and Electron scattering angles θ e between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E p and G M p were determined. The results indicate that G E p ( q 2 ) decreases faster with increasing q 2 than G M p ( q 2 ). Quasi-elastic electron-deuteron cross sections have been determined at values of q 2 = 0.39, 0.565, 0.78, 1.0 and 1.5 (GeV/ c ) 2 and scattering angles between 10° and 12°. At q 2 = 0.565 (GeV/ c 2 data have also been taken with θ e = 35° and at q 2 = 1.0 and 1.5 (GeV/ c ) 2 with θ e = 86°. Electron-proton as well as electron-neutron scattering cross sections have been deduced by the ratio method. The theoretical uncertainties of this procedure are shown to be small by comparison of the bound with the free proton cross sections. The magnetic form factor of the neutron G M n derived from the data is consistent with the scaling law. The charge form factor of the neutron is found to be small.

14 data tables

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

More…

Double tag events in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 531 (2002) 39-51, 2002.
Inspire Record 565440 DOI 10.17182/hepdata.49820

Double-tag events in two-photon collisions are studied using the L3 detector at LEP centre-of-mass energies from root(s)=189 GeV to 209 GeV. The cross sections of the e+e- -> e+e- hadrons and gamma*gamma* -> hadrons processes are measured as a function of the photon virtualities, Q1^2 and Q2^2, of the two-photon mass, W_gammagamma, and of the variable Y=ln(W_gammagamma^2/(Q1 Q2)), for an average photon virtuality &lt;Q2> = 16 GeV2. The results are in agreement with next-to-leading order calculations for the process gamma*gamma* -> q qbar in the interval 2 &lt;= Y &lt;= 5. An excess is observed in the interval 5 &lt; Y &lt;= 7, corresponding to W_gammagamma greater than 40 GeV . This may be interpreted as a sign of resolved photon QCD processes or the onset of BFKL phenomena.

6 data tables

Differential cross section as a function of the photon virtualities Qi**2. Here Q1 is the virtuality w.r.t the electron vertex, and Q2 w.r.t the positron vertex. Data are given both before and after radiative corrections.

Differential cross section as a function of W, the invariant mas of the virtual GAMMA*GAMMA* system. Data are given both before and after radiative corrections.

Differential cross section as a function of the variable LN(W**2/Q1*Q2). Data are given both before and after radiative corrections.

More…

Total cross-section in gamma gamma collisions at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 519 (2001) 33-45, 2001.
Inspire Record 552997 DOI 10.17182/hepdata.49853

The reaction e+e- -> e+e- gamma* gamma* -> e+e- hadrons for quasi-real photons is studied using data from root(s) = 183 GeV up to 202 GeV. Results on the total cross sections sigma(e+e- -> e+e- hadrons) and sigma(+e- gamma* gamma* -> e+e- hadrons) are given for the two-photon centre-of-mass energies 5 GeV &lt; Wgammagamma &lt; 185 GeV. The total cross section of two real photons is described by a Regge parametrisation. We observe a steeper rise with the two-photon centre-of-mass energy as compared to the hadron-hadron and the photon-proton cross sections. The data are also compared to the expectations of different theoretical models.

2 data tables

The measured total cross section for E+ E- --> E+ E- HADRONS. The first DSYS error is the total experimental systematic uncertainty and the second DSYS error is the uncertainty introduced by unfolding the data with PYTHIA and PHOJET corrections seperately.

The total cross section for two photon production of hadrons. The final column gives the data averaged over all energies together with the experimental systematic error (first DSYS) and the difference between the average and the data unfolded with PHOJET (lower sign) and PYTHIA (upper sign) seperately (second DSYS).


Measurement of the low-x behavior of the photon structure function F2(gamma).

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2000) 15-39, 2000.
Inspire Record 529899 DOI 10.17182/hepdata.49907

The photon structure function F2-gamma(x,Q**2) has been measured using data taken by the OPAL detector at centre-of-mass energies of 91Gev, 183Gev and 189Gev, in Q**2 ranges of 1.5 to 30.0 GeV**2 (LEP1), and 7.0 to 30.0 GeV**2 (LEP2), probing lower values of x than ever before. Since previous OPAL analyses, new Monte Carlo models and new methods, such as multi-variable unfolding, have been introduced, reducing significantly the model dependent systematic errors in the measurement.

12 data tables

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 1.9 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 3.7 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the FD for Q**2 = 8.9 GeV**2.

More…

Study of Dimuon Production in Photon-Photon Collisions and Measurement of QED Photon Structure Functions at LEP

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 19 (2001) 15-28, 2001.
Inspire Record 539642 DOI 10.17182/hepdata.49854

Muon pair production in the process e+e- -> e+e-mu+mu- is studied using the data taken at LEP1 (sqrt(s) \simeq m_Z) with the DELPHI detector during the years 1992-1995. The corresponding integrated luminosity is 138.5 pb^{-1}. The QED predictions have been tested over the whole Q^2 range accessible at LEP1 (from several GeV^2/c^4 to several hundred GeV^2/c^4) by comparing experimental distributions with distributions resulting from Monte Carlo simulations using various generators. Selected events are used to extract the leptonic photon structure function F_2^\gamma. Azimuthal correlations are used to obtain information on additional structure functions, F_A^\gamma and F_B^\gamma, which originate from interference terms of the scattering amplitudes. The measured ratios F_A^\gamma/F_2^\gamma and F_B^\gamma/F_2^\gamma are significantly different from zero and consistent with QED predictions.

3 data tables

The measured QED photon structure function at Q**2 = 12.5 GeV for the combine SAT and STIC data.

The measured QED photon structure function at Q**2 = 120 GeV for the combine SAT and STIC data.

Ratio of the structure functions FA and FB to F2.


Measurement of the charm production cross-section in gamma gamma collisions at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 514 (2001) 19-28, 2001.
Inspire Record 539946 DOI 10.17182/hepdata.49797

Open charm production in gamma-gamma collisions is studied with data collected at e+e- centre-of-mass energies from 189 GeV to 202 GeV corresponding to a total integrated luminosity of 410 pb-1. The charm cross section sigma(gamma gamma ---> c c~ X) is measured for the first time as a function of the two-photon centre-of-mass energy in the interval from 5 GeV to 70 GeV and is compared to NLO QCD calculations.

3 data tables

The total cross section for the process E+ E- --> E+ E- CQ CQBAR X.

The total cross section for the process GAMMA GAMMA --> CQ CQBAR X.

Correlation matrix of the data after unfolding.


Study of hadronic final states from double tagged gamma gamma events at LEP.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
CERN-EP-2003-025, 2003.
Inspire Record 619958 DOI 10.17182/hepdata.49702

The interaction of virtual photons is investigated using double tagged gammagamma events with hadronic final states recorded by the ALEPH experiment at e^+e^- centre-of-mass energies between 188 and 209 GeV. The measured cross section is compared to Monte Carlo models, and to next-to-leading-order QCD and BFKL calculations.

10 data tables

Differential cross section as a function of the relative energy of the scattered electrons.

Differential cross section as a function of the polar angle THETA of the scattered electrons.

Differential cross section as a function of the virtuality Q**2 of the photons.

More…

Measurement of the hadronic photon structure function F2(gamma) at LEP2.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 533 (2002) 207-222, 2002.
Inspire Record 583115 DOI 10.17182/hepdata.49744

The hadronic structure of the photon F2gamma is measured as a function of Bjorken x and of the photon virtuality Q2 using deep-inelastic scattering data taken by the OPAL detector at LEP at e+e- centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F2gamma are extended to an average Q2 of <Q2>=780GeV2 using data in the kinematic range 0.15 < x < 0.98. The Q2 evolution of F2gamma is studied for 12.1 < <Q2> < 780GeV2 using three ranges of x. As predicted by QCD, the data show positive scaling violations in F2gamma for the central x region 0.10-0.60. Several parameterisations of F2gamma are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data.

13 data tables

F2 and DSIG/DX for the EE sample in the high Q**2 region as a function of X.

Statistical correlations between the bins in the preceding table.

The measured value of F2 and DSIG/DX for the SW data sample in the Q**2 range 9 to 15 GeV**2.

More…

Inclusive pi0 and K0(S) production in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 524 (2002) 44-54, 2002.
Inspire Record 563335 DOI 10.17182/hepdata.49800

The reactions ee->ee+pi0+X and ee->ee+K0s+X are studied using data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 202 GeV. Inclusive differential cross sections are measured as a function of the particle transverse momentum pt and the pseudo-rapidity. For pt &lt; 1.5 GeV, the pi0 and K0s differential cross sections are described by an exponential, typical of soft hadronic processes. For pt > 1.5 GeV, the cross sections show the presence of perturbative QCD processes, described by a power-law. The data are compared to Monte Carlo predictions and to NLO QCD calculations.

4 data tables

The PI0 differential cross section as a function of PT.

The PI0 differential cross section as a function of pseudorapidity.

The K0S differential cross section as a function of PT.

More…