Rescattering probed by the emission of slow target associated particles in high-energy heavy ion interactions

The EMU01 collaboration Adamovich, M.I ; Aggarwal, M.M ; Alexandrov, Y.A ; et al.
Phys.Lett.B 363 (1995) 230-236, 1995.
Inspire Record 406952 DOI 10.17182/hepdata.28438

In this letter the distribution of slow target associated particles emitted in Au + Emulsion interactions at 11.6 A GeV/ c is studied. The three models RQMD, FRITIOF and VENUS are used for comparisons and especially their treatment of rescattering is investigated.

6 data tables

No description provided.

PROJECTILE ASSOCIATED HE-FRAGMENTS.

No description provided.

More…

Isospin invariance in the reaction n p ---> pi0 d

Wilson, S.S. ; Longo, M.J. ; Young, K.K. ; et al.
Phys.Lett.B 35 (1971) 83-86, 1971.
Inspire Record 69283 DOI 10.17182/hepdata.28477

A measurement of the differential cross section for the reaction n + p → d + π° has been made using a neutron beam with kinetic energies up to 720 MeV. The angle and momentum of the deuterons were measured using an analyzing magnet and wire spark chambers with a magnetostrictive readout. The photons from the decaying π° were not detected. The neutron energy was calculated from the measured deuteron angle and momentum. The cross sections are compared to those for the reaction π + + d ⇆ p + p as a test of isotopic spin invariance in strong interactions. The symmetry of the cross sections about 90° is also investigated, and an upper limit of about 1% is placed on the real part of the ratio of isospin-violating to isospin-conserving amplitudes.

1 data table

EKIN IS 325 TO 675 MEV.


Electromagnetic form-factors of the proton at squared four momentum transfers between 10-fm**-2 and 50 fm**-2

Berger, C ; Burkert, V. ; Knop, G. ; et al.
Phys.Lett.B 35 (1971) 87-89, 1971.
Inspire Record 69362 DOI 10.17182/hepdata.28478

Electron-proton elastic scattering cross sections have been measured to determine the proton electromagnetic form factors at squared four-momentum transfers q 2 between 10 and 50 fm −2 . At these values of q 2 we measured angular distributions between 25° and 110° and in addition at 25° and 35° cross sections for q 2 from 2 to 20 fm −2 using the external electron beam of the Bonn 2.5 GeV electron synchrotron. Our results confirm deviations from the scaling law.

15 data tables

Axis error includes +- 2/2 contribution (NORMALIZATION ERROR).

Axis error includes +- 2/2 contribution (NORMALIZATION ERROR).

Axis error includes +- 2/2 contribution (NORMALIZATION ERROR).

More…

Proton proton total cross-sections between 179 and 555 mev

Schwaller, P. ; Pepin, M. ; Measday, David F. ; et al.
Phys.Lett.B 35 (1971) 243-246, 1971.
Inspire Record 69250 DOI 10.17182/hepdata.28479

Proton-proton total cross-sections have been measured at nine different energies between 179 and 555 MeV (607 and 1162 MeV/ c ) with a typical accuracy of 0.9%. The accuracy is limited by a poor knowledge of the Coulomb-nuclear interference region in elastic scattering.

1 data table

No description provided.


Determination of the proton proton elastic cross-section at 30-GeV center-of-mass energy

Holder, M. ; Radermacher, E. ; Staude, A. ; et al.
Phys.Lett.B 35 (1971) 361-364, 1971.
Inspire Record 69227 DOI 10.17182/hepdata.28484

The absolute luminosity of the CERN Intersecting Storage Rings has been determined by the Van der Meer method. Combining the measurement with small angle proton-proton elastic events, we find σ elastic = (6.8±0.6)mb.

1 data table

No description provided.


New evidence for the p-11(1470) resonance in pi- p ---> n pi0 below 600 mev

Hauser, M.G. ; Chen, K.W. ; Crean, P.A. ;
Phys.Lett.B 35 (1971) 252-256, 1971.
Inspire Record 69248 DOI 10.17182/hepdata.28485

The differential cross section for π − p → n π o has been measured in detail from 150 to 600 MeV. The backward cross section has a previously unobserved dramatic dip at 425 MeV. We interpret this dip in terms of interference between the P 33 (1236) and the P 11 (1470) resonances. These data provide strong evidence for the adequacy of the phase shift solutions in this energy range.

116 data tables

SCALED TO AGREE WITH SOLUTION AT 225 MEV AND THEN INTERPOLATED.

SCALED TO AGREE WITH SOLUTION AT 225 MEV AND THEN INTERPOLATED.

SCALED TO AGREE WITH SOLUTION AT 225 MEV AND THEN INTERPOLATED.

More…

New measurement of orthopositronium decay rate

Asai, S. ; Orito, S. ; Shinohara, N. ;
Phys.Lett.B 357 (1995) 475-480, 1995.
Inspire Record 397235 DOI 10.17182/hepdata.28486

The orthopositronium decay rate is measured with an entirely new method, in which the pickoff annihilation rate is directly measured as a function of time with a high-resolution germanium detector. The decay rate can be determined without the ambiguities of the thermalization nor of the extrapolation, which might have been sources of the main systematic errors in all the previous experiments. Two independent measurements are carried out with two different types of SiO 2 powder, resulting in decay rate values consistent with each other. The combined result is λ 0 = 7.0398 ± 0.0025 (stat.) ± 0.0015 (sys.) μs −1 , which is consistent with the QED prediction, and differs by 2.9–4.1Φ from three recent measurements.

1 data table

No description provided.


Transmission regeneration of neutral k-mesons on hydrogen in the momentum region of 14-42 gev/c

Birulev, V.K. ; Fadeev, N.G. ; Golovanov, L.B. ; et al.
Phys.Lett.B 38 (1972) 452-456, 1972.
Inspire Record 75815 DOI 10.17182/hepdata.28334

The measurements of the transmission regeneration amplitude on hydrogen in the momentum region of 14–42 GeV/ c indicate that in accordance with the Pomeranchuk theorem its magnitude |ƒ° − ƒ °|/k decreases as energy increases and its phase is approximately constant and equal to arg (ƒ° − ƒ °) = (−118 ± 13)° .

1 data table

THE REGENERATION AMPLITUDE DECREASES OVER THIS ENERGY RANGE.


pi+ pi- production by e+ e- annihilation in the rho energy range with the Orsay storage ring

Benaksas, D. ; Cosme, G. ; Jean-Marie, B. ; et al.
Phys.Lett.B 39 (1972) 289-293, 1972.
Inspire Record 73648 DOI 10.17182/hepdata.28321

A large solid angle detector has been used to observe two body events produced by electron-positron collisions in the Orsay storage ring. From the π + π − excitation curve in the ϱ region we have deduced the amplitude and the phase of the ω-ϱ interference, and the ϱ resonance paramaters: M ϱ = (775.4±7.3) MeV, Γ ϱ = (149.6 ± 23.2) MeV, √ B ( ω → π + π − ) = 0.19 ± 0.05, φ = (85.7 ± 15.3) 0 , σ ( e + e − → ϱ ) = (1.00 ± 0.13) μ b at S = M ϱ 2 , B ( ϱ → e + e − = (4.1 ± 0.5) × 10 −5 , Γ ( ϱ → e + e − ) = (6.1 ± 0.7) keV, ( g ϱ 2 /4 π ) = 2.26 ± 0.25, ( g ϱππ 2 /4 π ) = 2.84 ± 0.50.

1 data table

STATISTICAL ERRORS ONLY. CROSS SECTION AT RHO0 PEAK IS 1.00 +- 0.13 MUB FROM FIT.


Two measurements of B0 anti-B0 mixing using kaon tagging

The ARGUS collaboration Albrecht, H. ; Hamacher, T. ; Hofmann, R.P. ; et al.
Phys.Lett.B 374 (1996) 256-264, 1996.
Inspire Record 403080 DOI 10.17182/hepdata.28387

Using the ARGUS detector at the e + e − storage ring DORIS II at DESY, we have made two measurements of the mixing parameter χ d using kaons as flavour tags. Using D ∗+ K ± correlations we found χ d = 0.20 ± 0.13 ± 0.12 and from the study of (D ∗+ ℓ − ) K ± correlations we obtained χ d = 0.19 ± 0.07 ± 0.09. The branching ratio for B → D ∗+ X has been updated: Br( B → D ∗+ X) = (19.6 ± 1.9) %. We have also determined the average multiplicity of charged kaons in B 0 decays to be 0.78 ± 0.08.

2 data tables

Mixing parameter from counting kaon events. First (...,C=D*+K+-) and second(...,C=(D*+LEPTON-)K+-) value are obtained from a study of D*+K+- and (D*+LEPTO N-)K+- correlations respectively. Second value and the value, reported in Phys.Lett. 324B (1994) 249, were averaged, result third value (...,C=COMBINED) of the mixing parameter in the table (see text for details). In the second value (...,C=(D*+LEPTON-)K+-) the first systematic error is due to the background estimation, the branching ratio for the process B --> K+(K-) X, experimental cuts, and the second one is due to to the uncertainty on the branching ratio for the processes D0 --> K+- X.

No description provided.