Date

Measurement of the inclusive jet cross-section in p anti-p collisions at s**(1/2) =1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 101 (2008) 062001, 2008.
Inspire Record 779574 DOI 10.17182/hepdata.57758

We report on a measurement of the inclusive jet cross section in $p \bar{p}$ collisions at a center-of-mass energy $\sqrt s=$1.96 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider corresponding to an integrated luminosity of 0.70 fb$^{-1}$. The data cover jet transverse momenta from 50 GeV to 600 GeV and jet rapidities in the range -2.4 to 2.4. Detailed studies of correlations between systematic uncertainties in transverse momentum and rapidity are presented, and the cross section measurements are found to be in good agreement with next-to-leading order QCD calculations.

36 data tables

Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.0 to 0.4 for cone radius R = 0.7.

Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.4 to 0.8 for cone radius R = 0.7.

Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.8 to 1.2 for cone radius R = 0.7.

More…

Search for scalar top quark pair production in natural gauge mediated supersymmetry models with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 715 (2012) 44-60, 2012.
Inspire Record 1112907 DOI 10.17182/hepdata.58809

The results of a search for pair production of the lighter scalar partners of top quarks in 2.05 fb-1 of pp collisions at sqrt(s) =7 TeV using the ATLAS experiment at the LHC are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons (electrons or muons) with invariant mass consistent with the Z boson mass, large missing transverse momentum and jets in the final state. At least one of the jets is identified as originating from a b-quark. No excess over Standard Model expectations is found. The results are interpreted in the framework of R-parity conserving, gauge mediated Supersymmetry breaking `natural' scenarios, where the neutralino is the next-to-lightest supersymmetric particle. Scalar top quark masses up to 310 GeV are excluded for the lightest neutralino mass between 115 GeV and 230 GeV at 95% confidence level, reaching an exclusion of the scalar top quark mass of 330 GeV for the lightest neutralino mass of 190 GeV. Scalar top quark masses below 240 GeV are excluded for all values of the lightest neutralino mass above the Z boson mass.

14 data tables

The missing ET distribution from the combined EE and MUMU data for SR1. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively.

The number of b-tagged jets for SR1 for the combined EE and MUMU channels. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively.

The distrubution of leading jet pT for SR1 for the combined EE and MUMU channels. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively. The last pT bin includes the number of overflow events for both data abd SM expectation.

More…

Measurement of the Transverse Momentum Distribution of W Bosons in pp Collisions at sqrt(s) = 7 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 85 (2012) 012005, 2012.
Inspire Record 925932 DOI 10.17182/hepdata.57986

This paper describes a measurement of the W boson transverse momentum distribution using ATLAS pp collision data from the 2010 run of the LHC at sqrt(s) = 7 TeV, corresponding to an integrated luminosity of about 31 pb^-1. Events from both W -> e nu and W -> mu nu are used, and the transverse momentum of the W candidates is measured through the energy deposition in the calorimeter from the recoil of the W. The resulting distributions are unfolded to obtain the normalized differential cross sections as a function of the W boson transverse momentum. We present results for pTW < 300 GeV in the electron and muon channels as well as for their combination, and compare the combined results to the predictions of perturbative QCD and a selection of event generators.

3 data tables

The normalized, differential cross secton measured in the W to Electron decay channel for the three different PT definitions, Born, Dressed and Bare.

The normalized, differential cross secton measured in the W to Muon decay channel for the three different PT definitions, Born, Dressed and Bare.

The normalized, differential cross secton from the Muon and Electron decay channel Combined for the Born-level PT definition.


Search for Massive Colored Scalars in Four-Jet Final States in sqrt{s}=7 TeV proton-proton collisions with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 71 (2011) 1828, 2011.
Inspire Record 939560 DOI 10.17182/hepdata.58020

A search for pair-produced scalar particles decaying to a four-jet final state is presented. The analysis is performed using an integrated luminosity of 34 pb^-1 recorded by the ATLAS detector in 2010. No deviation from the Standard Model is observed. For a scalar mass of 100 GeV (190 GeV) the limit on the scalar gluon pair production cross section at 95% confidence level is 1 nb (0.28 nb). When these results are interpreted as mass limits, scalar-gluons (hyperpions) with masses of 100 to 185 GeV (100 to 155 GeV) are excluded at 95% confidence level with the exception of a mass window of width about 5 GeV (15 GeV) around 140 GeV.

9 data tables

The distributions of the momentum of the 4th jet.

The di-jet delta(R) distribution for the sgluon candidate with the highest PT jet after applying the PT cut of 55 GeV and pairing the four leading jets into 2 sgluon candidates.

The distribution in relative mass difference of the two sgluon candidates after application of the PT and di-jet delta(R) cuts.

More…

NUCLEUS IS NUCLEAR PHOTOEMULSION. EVENT WITH A TOTAL CHARGE OF ALL SPECTATOR FRAGMENTS OF A PROJECTILE = 0.

NUCLEUS IS NUCLEAR PHOTOEMULSION. EVENT WITH A TOTAL CHARGET OF ALL SPECTATOR FRAGMENTS OF A PROJECTILE = 1.

NUCLEUS IS NUCLEAR PHOTOEMULSION.

More…

Fragmentation of Neon-22 Relativistic Nuclei on Photoemulsion Nuclei

The Alma Ata-Bucharest-Leningrad-Dubna-Dushanbe-Yerevan- Kosice-Cracow-Leningrad-Moscow-Tashkent-Tbilisi-Ulan Bator-Zernograd collaboration Andreeva, N.P. ; Anzon, Z.V. ; Bubnov, V.I. ; et al.
Sov.J.Nucl.Phys. 47 (1988) 102-108, 1988.
Inspire Record 239909 DOI 10.17182/hepdata.38972

None

4 data tables

NUCLEUS IS THE NUCLEUS OF EMULSION.

NUCLEUS IS THE NUCLEUS OF EMULSION.

NUCLEUS IS THE NUCLEUS OF EMULSION.

More…

Observation of the top quark

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 74 (1995) 2632-2637, 1995.
Inspire Record 393099 DOI 10.17182/hepdata.42452

The DO collaboration reports on a search for the Standard Model top quark in pbar-p collisions at Sqrt(s)=1.8TeV at the Fermilab Tevatron, with an integrated luminosity of approximately 50pb-1. We have searched for t-tbar production in the dilepton and single-lepton decay channels, with and without tagging of b-quark jets. We observed 17 events with an expected background of 3.8+/-0.6 events. The probability for an upward fluctuation of the background to produce the observed signal is 2.0E-6 (equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consistent with top quark decay. We conclude that we have observed the top quark and measure its mass to be 199~+19_21 (stat.)+/- 22 (syst.)GeV/c**2 and its production cross section to be 6.4 +/- 2.2 pb.

1 data table

Cross section refers to top quark mass equal 199. (+19, -21, +- 22) GeV.


A Study of the strong coupling constant using W + jets processes

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 3226-3231, 1995.
Inspire Record 394610 DOI 10.17182/hepdata.42454

The ratio of the number of W+1 jet to W+0 jet events is measured with the D0 detector using data from the 1992–93 Tevatron Collider run. For the W→eν channel with a minimum jet ET cutoff of 25 GeV, the experimental ratio is 0.065±0.003stat±0.007syst. Next-to-leading order QCD predictions for various parton distributions agree well with each other and are all over 1 standard deviation below the measurement. Varying the strong coupling constant αs in both the parton distributions and the partonic cross sections simultaneously does not remove this discrepancy.

1 data table

Two values of ALPHA_S corresponds the two different parton distribution functions (pdf) used in extraction of ALPHA_S from the ratio. The dominant systematic error is from the jet energy scale uncertainty.


W and Z boson production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 1456-1461, 1995.
Inspire Record 395459 DOI 10.17182/hepdata.42368

The inclusive cross sections times leptonic branching ratios for W and Z boson production in PbarP collisions at Sqrt(s)=1.8 TeV were measured using the D0 detector at the Fermilab Tevatron collider: Sigma_W*B(W->e, nu) = 2.36 +/- 0.07 +/- 0.13 nb, Sigma_W*B(W->mu,nu) = 2.09 +/- 0.23 +/- 0.11 nb, Sigma_Z*B(Z-> e, e) = 0.218 +/- 0.011 +/- 0.012 nb, Sigma_Z*B(Z->mu,mu) = 0.178 +/- 0.030 +/- 0.009 nb. The first error is the combined statistical and systematic uncertainty, and the second reflects the uncertainty in the luminosity. For the combined electron and muon analyses we find: [Sigma_W*B(W->l,nu)]/[Sigma_Z*B(Z->l,l)] = 10.90 +/- 0.49. Assuming Standard Model couplings, this result is used to determine the width of the W boson: Gamma(W) = 2.044 +/- 0.093 GeV.

1 data table

The second DSYS error is due to luminosity.


Transverse energy distributions within jets in p anti-p collisions at S**(1/2) = 1.8-Tev

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 357 (1995) 500-508, 1995.
Inspire Record 398175 DOI 10.17182/hepdata.42372

The distribution of the transverse energy in jets has been measured in p p collisions at s =1.8 TeV TeV using the DØ detector at Fermilab. This measurement of the jet shape is made as a function of jet transverse energy in both the central and forward rapidity regions. Jets are shown to narrow both with increasing transverse energy and with increasing rapidity. Next-to-leading order partonic QCD calculations are compared to the data. Although the calculations qualitatively describe the data, they are shown to be very dependent on renormalization scale, parton clustering algorithm, and jet direction definition and they fail to describe the data in all regions consistently.

6 data tables

No description provided.

No description provided.

No description provided.

More…