Search for Neutrino-Induced Neutral Current $\Delta$ Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess Under a Single-Photon Hypothesis

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.Lett. 128 (2022) 111801, 2022.
Inspire Record 1937333 DOI 10.17182/hepdata.114860

We report results from a search for neutrino-induced neutral current (NC) resonant $\Delta$(1232) baryon production followed by $\Delta$ radiative decay, with a $\langle0.8\rangle$~GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.80$\times$10$^{20}$ protons on target) are used to select single-photon events with one or zero protons and without charged leptons in the final state ($1\gamma1p$ and $1\gamma0p$, respectively). The background is constrained via an in-situ high-purity measurement of NC $\pi^0$ events, made possible via dedicated $2\gamma1p$ and $2\gamma0p$ selections. A total of 16 and 153 events are observed for the $1\gamma1p$ and $1\gamma0p$ selections, respectively, compared to a constrained background prediction of $20.5 \pm 3.65 \text{(sys.)} $ and $145.1 \pm 13.8 \text{(sys.)} $ events. The data lead to a bound on an anomalous enhancement of the normalization of NC $\Delta$ radiative decay of less than $2.3$ times the predicted nominal rate for this process at the 90% confidence level (CL). The measurement disfavors a candidate photon interpretation of the MiniBooNE low-energy excess as a factor of $3.18$ times the nominal NC $\Delta$ radiative decay rate at the 94.8% CL, in favor of the nominal prediction, and represents a greater than $50$-fold improvement over the world's best limit on single-photon production in NC interactions in the sub-GeV neutrino energy range

0 data tables match query

Identified Charged Particles in Quark and Gluon Jets

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 17 (2000) 207-222, 2000.
Inspire Record 524696 DOI 10.17182/hepdata.50064

A sample of 2.2 million hadronic Z decays, selected from the data recorded by the Delphi detector at LEP during 1994-1995 was used for an improved measurement of inclusive distributions of pi+, K+ and p and their antiparticles in gluon and quark jets. The production spectra of the individual identified particles were found to be softer in gluon jets compared to quark jets, with a higher multiplicity in gluon jets as observed for inclusive charged particles. A significant proton enhancement in gluon jets is observed indicating that baryon production proceeds directly from colour objects. The maxima, xi^*, of the xi-distributions for kaons in gluon and quark jets are observed to be different.

0 data tables match query

Inclusive Sigma- and Lambda(1520) production in hadronic Z decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 475 (2000) 429-447, 2000.
Inspire Record 524694 DOI 10.17182/hepdata.49984

Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.

0 data tables match query